
Species Identification through DNA

String Analysis

Submitted in partial fulfilment

of the requirements of the degree of

Bachelor of Science (Honours)

of Rhodes University

Mark Vorster

Grahamstown, South Africa

November 2012

Abstract

The Rhodes University Department of Biochemistry, Microbiology and Biotechnology has

found need to identify the distinct species of bacteria given a large set of DNA sequences.

However, without existing tools to solve this specific problem, they have found it takes

an inordinate amount of time. Based on assumptions that they are able to make given,

their specific problem, an approximate string matching algorithm can be applied to speed

up this process and aid them in their research. By implementing this algorithm we will

show that significant speedup was indeed attained.

Acknowledgements

There are a number of people I would like to thank for continued support throughout

this year and in life in general. Firstly my parents who have supported me for nearly

25 years and who have given me all that I have needed to prepare myself for my future.

Secondly, my fiancée, who has made my life complete and is always full of faith and

motivation. Finally I would like to thank the Computer Science Department, in particular

my supervisor Phillip Machanick for all his wisdom and guidance.

In addition I would like to acknowledge the financial and technical support of Telkom,

Tellabs, Stortech, Genband, Easttel, Bright Ideas 39 and THRIP through the Telkom

Centre of Excellence in the Department of Computer Science at Rhodes University.

ACM Computing Classification System Classification

Thesis classification under the ACM Computing Classification System (1998 version, valid

through 2012)

J.3 [Life and Medical Sciences]: Biology and Genetics

I.5.4 [Applications]: Text Processing

General Terms: Bioinformatics, Genetic Sequence Analysis, Sequence Alignment, Phy-

logenetic Analysis, Approximate String Matching

Contents

1 Introduction 1

1.1 Problem Statement and Research Goals . 1

1.2 Background Discussion . 2

1.3 Structure of Thesis . 2

2 Background Literature 3

2.1 Bioinformatics . 3

2.1.1 Genetics . 4

2.1.2 History of Bioinformatics . 5

2.2 Sequence Analysis . 6

2.2.1 Sequence Alignment . 6

2.2.2 Phylogenetic Analysis and Species Identification 7

2.2.3 FASTA format . 7

2.3 String Matching . 8

2.4 Problem Discussion . 9

i

CONTENTS ii

3 Design and Implementation 10

3.1 Analysis/Requirements . 10

3.1.1 Assumptions . 10

3.1.2 Limitations . 11

3.2 Implementation . 12

3.2.1 Language Choice . 12

3.3 Changes to Baase’s algorithm . 12

3.3.1 Value Initialisations . 13

3.3.2 Stop Case and Branch Pruning . 14

3.4 Sequence by Sequence . 14

3.4.1 Reverse Compliment . 15

3.5 Grouping Algorithm . 16

3.6 Hardware Requirements . 17

4 Results 18

4.1 Output . 18

4.2 Performance Results . 19

5 Conclusion 22

5.1 Discussion . 22

5.2 Future Extensions . 23

5.2.1 Comparative Analysis . 23

5.2.2 Graphical User Interface . 23

5.2.3 Parallelisation . 23

CONTENTS iii

Bibliography 24

A Code 27

B Data Results 41

List of Tables

4.1 Output File Example . 19

B.1 Large Dataset Runtime . 41

B.2 Time to complete for x sequences . 42

B.3 Comparisons Achieved per Second . 43

B.4 Overhead Time . 44

B.5 Overhead Percentage . 45

iv

List of Figures

3.1 Approximate String Matching Example . 15

3.2 Sequence by Sequence Example . 16

4.1 Comparisons Required for X Sequences . 20

4.2 Comparisons per Second . 20

4.3 Overal Time to Complete for X Comparisons 21

4.4 Overall Time to Execute for X Sequences 21

v

Chapter 1

Introduction

1.1 Problem Statement and Research Goals

The Rhodes University Department of Biochemistry, Microbiology & Biotechnology are

undergoing research in the area of species identification which requires a large amount

of computer processing. There is no existing tool that fulfills research requirements and

they have reported that, using the tools they do have, it can take as long as ten days

to process a data set. Reasons for this include the fact that they have to undergo an

entire global sequence alignment and then count the differences for each sequence. The

bioinformaticians have, however, identified assumptions and areas that can drastically

reduce the processing time for a sample.

This projects aim is to understand how to best to utilise these assumptions and apply

string matching theory to bioinformatic sequence analysis in order to aid the bioinfor-

maticians in their research. In particular the objective is to create a tool for their specific

problem that is able to process the large datasets in a timely manner.

1

1.2. BACKGROUND DISCUSSION 2

1.2 Background Discussion

The Rhodes University Department of Biochemistry, Microbiology & Biotechnology have

taken large aquatic samples of bacterial DNA on which they wish to do a phylogenetic

analysis. They have found the gene samples have specific areas of highly conserved and

other highly variable sections. By focusing on these sections it should be possible to

greatly reduce the amount of time to process the samples. The samples have therefore

been processed accordingly, which simplifies the problem as the sequences are assumed

to be aligned to the same location. They require the sequences to be grouped with other

sequences of no more than approximately three percent difference, although this difference

is variable. The proposed method is to calculate the differences with the approximate

string matching algorithm. There are two specific areas that can be made more efficient

on this algorithm due to the assumptions mentioned above. Firstly, as similarities within

a small percentage difference are being searched for, branches can be pruned from the

search tree once the difference exceeds the threshold. Secondly, as the sequences are

assumed to begin at the same location, and thus has no need for global alignment, this

reduces the complexity saving processing time.

1.3 Structure of Thesis

This thesis is organised into the following chapters:

Chapter 2 is a discussion of the background literature in the fields of bioinformatics and

approximate string matching.

Chapter 3 specifies the design and implementation details of creating the system.

Chapter 4 describes the results obtained from the system, both the output and perfor-

mance are examined.

Chapter 5 summarises the aims and findings of this research and explores a few exten-

sions.

Chapter 2

Background Literature

Since DNA sequences were stored in the first bioinformatics databases, computers have

been aiding and speeding up the process of analysis for bioinformaticians. The Rhodes

University Department of Biochemistry, Microbiology & Biotechnology has found need

to identify the distinct species of bacteria given a large set of DNA sequences. However,

they have identified a means to decrease the time taken in the processing of bacterial

DNA for phylogenetic analysis. While the algorithms work well for small numbers of

samples, increasing the number of samples into the tens of thousands has started to

take an inordinate amount of time. After examining the broad area of bioinformatics

focusing on framing the problem, this paper looks at how progression in the fundamentals

of genetics along with the rise of computers began bioinformatics. It then focuses more

specifically on sequence analysis including mentioning the problems of sequence alignment

and phylogenetic analysis, then continuing with a discussion of the approximate string

matching algorithm applied.

2.1 Bioinformatics

The Biomedical Information Science and Technology Initiative’s Definition Committee

which was chaired by Dr Huerta defined ‘Bioinformatics’ in the year 2000 as

3

2.1. BIOINFORMATICS 4

Research, development, or application of computational tools and ap-

proaches for expanding the use of biological, medical, behavioural or health

data, including those to acquire, store, organize, archive, analyse, or visualise

such data. [8]

A more concise definition is found in the Oxford English Dictionary:

The branch of science concerned with information and information flow

in biological systems, esp. the use of computational methods in genetics and

genomics. [1]

While Biology, the study of life, has fascinated scientists and philosophers for hundreds

of years, originating as the passing on of knowledge of plants and animals for survival

purposes, it progressed into medicine, agriculture, botany and zoology to name a few. At

this stage the classification of living organisms was done in a qualitative manner through

observation. As an example from an observation that animals look the same it can be

deduced that they are of the same species, or the grouping of all animals with mammary

glands being called mammals. The development of the microscope allowed biologists to

move beyond the reach of the naked eye, and the study of cells became paramount to all

facets of biology. [9]

Further technological advances in the 19th century in genetics and cellular biology and

20th century advances in molecular biology as explained by Xu et al. [16] have made it

possible to observe the fundamental units of biology and genetics, RNA and DNA. Being

able to quantify this hereditary information allows the use of computers to aid in the

analysis of the data.

2.1.1 Genetics

Biology is the science of life and genetics is the study of traits being passed through

genes, the fundamental units of genetics. All life goes through a reproductive cycle and

2.1. BIOINFORMATICS 5

the DNA chain molecules hold the inherited information that passes from generation to

generation. The macromolecules form a ladder-like helix from two strands, the runs of

which are formed by pairs of a nitrogenous bases either adenine and thymine or gua-

nine with cytosine.1 Baldi and Brunak [3] name a fundamental feature of these chain

molecules as their ability to be represented digitally. The representation most commonly

used represents the bases with four letters: A, T, G and C [14, p. 18]. Reviewing this in-

formation from the bottom up, the bases together form genes, of which there are multiple

in each chromosome, and which carry the information required for cell growth, division

and function.

2.1.2 History of Bioinformatics

Now that some basic concepts have been discussed the history of where and when bioin-

formatics started can be examined. While the term ‘bioinformatics’ only came about in

the 1990s, work which would now be classified under it began many years before. Wat-

son, Crick, Wilkins and Franklin first discovered the structure of DNA in 1953 [6] [7, p.

163] and they quickly understood how it allowed a copying mechanism for the hereditary

information. The structure of DNA enables an abstraction of the molecule down to just

four base units, which allows for an easy digital representation, and this is where bioinfor-

matics begins. The storing of this information in databases was the first problem posed

to bioinformaticians, largely due to the sheer volume of data, [11, p. 7] the number of

base pairs in a DNA molecule ranges from thousands to hundreds of thousands, but this,

as pointed out by Tramontano, [14, p. 6] would hardly be useful without annotations of

the knowledge of each sequence alongside it.

1There is an additional base, ‘uracil’, that forms part of RNA sequences, but for simplicity it is not
in the scope of this project.

2.2. SEQUENCE ANALYSIS 6

2.2 Sequence Analysis

The analytical study of DNA, RNA or any amino acid sequence is included under the

umbrella of sequence analysis. Won, Park, Yoon and Kim identify the reason for DNA

sequence analysis as being that often knowledge can be inferred about newly sequenced

samples through knowledge of functions of other sequences [15]. Tramontano too describes

how inference can be made from similar sequences to homology, as homologous sequences

are expected to have higher similarity than unrelated sequences [14, p. 77]. Sequence

analysis is more general than this. Gibas and Jambeck list the 5 main types of sequence

analysis as :

• Knowledge-based single sequence analysis for sequence characteristics.

• Pairwise sequence comparison and sequence-based searching.

• Multiple sequence alignment.

• Sequence motif discovery in multiple alignments.

• Phylogenetic inference.

[7, pp. 159,160]

2.2.1 Sequence Alignment

One of the major issues in sequence analysis is the alignment of sequences, and while for

the purpose of this project the sequences will be assumed to be globally aligned, it is still

important to understand the concept. Brudno et al. recognise sequence alignment among

the most successful applications of Computer Science in Bioinformatics [4]. Before any

meaningful analysis into the genetic relationship between genes can take place, sequences

must be aligned [13, p. 771]. The process of alignment is often simply matching the posi-

tions of sequences to their least different (or most similar) locations. This is particularly

important with partial samples where one sample is being aligned within another with

2.2. SEQUENCE ANALYSIS 7

unknown starting locations. This can be very computationally expensive, as not only

does each potential starting location need to be examined, but due to the nature of genes

there is inherent fuzziness, bases can be inserted or deleted in mutations, so at each point

there may be one or more bases extra or missing from either sequence. [14, p. 55] [12]

2.2.2 Phylogenetic Analysis and Species Identification

Phylogenetics is a branch of taxonomy, the study of homogeneity of organisms including

determining their evolutionary relationships, for example their species, that deals with

numerical data such as DNA sequences. One of the main applications of phylogenetics

is the construction of phylogenetic trees through studying similarities between organisms

[10]. These phylogenetic trees are a visualisation of sequences’ genetic relationships. The

steps in building a phylogenetic tree from a set of DNA sequences is first to determine

the similarity of each of the sequences, then starting with the most similar pair, draw the

branch of the tree and calculate the average distance between that branch and each of the

remaining sequences [14, pp. 66 - 73]. This research focuses on the first step, the building

of the similarity table, which, although trivial for small numbers of sequences, becomes

more important when dealing with thousands due to its exponential nature. This can

make computation very slow.

2.2.3 FASTA format

The FASTA format is the data format chosen by the Rhodes University Department of

Biochemistry, Microbiology & Biotechnology to represent DNA sequence data, and it

is one of the most commonly used and simple formats [7, p.180]. A file in the FASTA

format can represent many DNA sequences,where each has a single header line followed by

multiple lines of sequence data. The header line requires a leading ‘greater than’ symbol

‘>’ and a single word which is the name of the sequence, the rest of the line is a comment

or description of the sequence. The data can contain multiple lines, new line characters are

2.3. STRING MATCHING 8

ignored, and whitespace, periods or underscores can have application-specific meaning.

Below is an example of a single sequence in the FASTA format.

>SequenceName description of the sequence

CCGGAATACCTAGGACATAGCAGAGGCGTCTTGCCTATACAG

TGTTTTTCTCCGAGACGCCTGATTACCTGCTAGTCGGGATGA

TAACCAAGAATTTGTGTCTGCTGCGCGCCATTTGCCAACCGA

GCCTTCATCCCCCGCCGGTCTGTGATGTCCCAATGGACCGGA

2.3 String Matching

String matching in computer science is applied to many fields, largely in text analysis,

but also in speech or character recognition and many others, as patterns can be similarly

found in the binary data. Approximate string matching algorithms are used when an

exact copy is expected, such as with determining the similarity of sequences. Baase [2,

pp. 504 - 508] discusses an algorithm for building a difference table between two strings

taking into account insertions and deletions as they may occur in DNA sequences. The

approach uses a dynamic programing technique to speed up the process of building a

two dimensional matrix where each point D[i][j] has the minimum number of differences

between two string segments P and T, each ending at pi and tj respectively. The matrix

is built up column by column where D[i][j] is calculated as the minimum of three possible

numbers either a ‘matchCost’ (if pi = tj) or a ‘reviseCost’(if pi 6= tj), a ‘insertCost’ and

a ‘deleteCost’ where each is defined as the following:

matchCost = D[i− 1][j − 1] , if pi = tj or

reviseCost = D[i− 1][j − 1] + 1 , if pi 6= tj

insertCost = D[i− 1][j] + 1

deleteCost = D[i][j − 1] + 1

2.4. PROBLEM DISCUSSION 9

2.4 Problem Discussion

Firstly, as mentioned previously, we are searching for similarities within a small percentage

difference, branches can be pruned from the search tree once D[i][j] exceeds the threshold,

as it is the minimum difference at that point in the matrix no further processing is needed.

Secondly, as the sequences are assumed to begin at the same location, the first row can

include a dependency on the previous column’s first row such that D[0][j] = D[0][j-1] if

pi = tj or D[0][j-1]+1 if pi 6= tj, which will reduce the possible ‘starting columns’ down to

only one percentage of the shortest gene rather than its entire length, saving processing but

more significantly space. Another method to make this more efficient could be explored

by noting that given two similar sequences a third sequence significantly different from

the first need not be compared at all with the second.

Chapter 3

Design and Implementation

3.1 Analysis/Requirements

The development requirements that were outlined by the biology department are as fol-

lows. They require a system that takes its input files in the FASTA file format and

compares all the sequences found therein to each other following this it groups them into

species based on a given difference threshold. The system needs to run in a timely manner

on up to about 10000 sequences of 400 to 800 bases each.

3.1.1 Assumptions

Pre-aligned Data

The information supplied by the biology department was that the current system that they

use takes ten days to process a sample. The bioinformaticians, however, have made an

assumption based on the fact that the sequences have been pre-processed. The sequences

are not entire genomes but sections that have been targeted for this processing, thus

they have already been globally aligned. This assumption is what allows the use of the

approximate string matching algorithm as opposed to time consuming global alignment

10

3.1. ANALYSIS/REQUIREMENTS 11

algorithms. In addition, while the local alignment needs to be taken into account, aligned

sequences are not the result of this processing, this allows advantage to be taken of branch

pruning.

3.1.2 Limitations

Single Threaded

While it would appear that this algorithm could achieve a large speed-up by taking advan-

tage of parallelisation, the computer available to the bioinformaticians for this research

has eight cores and as they are collecting many sets of samples at a time they have ex-

pressed that they would like each to run on a single thread. This would allow them to set

up the processing of eight difference sample sets concurrently, as opposed to doing each

sample set as quickly as possible if it could use all the resources. Further discussion on

parallelisation is included in the future extension section of this paper.

Working Directly with DNA Sequences

When working with DNA it is often possible to convert from DNA sequences to the

protein sequences [11]. This is due to the fact that while there are only four bases in

DNA sequences, protein sequences have 20. The resulting protein sequences are, as a

result, shorter and more unique, which not only allows for faster processing but can also

be more accurate. While this is the preferred way of analysing sequences, this approach

is not always applicable, and as a result the bioinformaticians have made a decision to

use DNA directly in their research .

Gene Similarity vs Homogeneity

Yet another limitation is that similarity does not imply homology. Homology in DNA

refers to the traits that are inherited from ancestors and therefore, given two homologous

3.2. IMPLEMENTATION 12

sequences, it follows that organisms from which the samples came from are of the same

species. However the lines around bacterial and microbial species are blurred [5] and as

such the bioinfomaticians have decided to correlate similarity and homogeneity for the

purpose of their research.

3.2 Implementation

The algorithm used in this work has been adapted from the approximate string matching

algorithm of Sara Baase[2, pp. 504 - 508]. Her algorithm uses a dynamic programing

approach, building a difference table in an attempt to find the first instance of a k-

th approximate match between a pattern and the text. The mismatches found in the

algorithm are described in a similar way to the mutations found in genetic material.

They include revise, delete and insert, where revise is where corresponding characters in

the pattern and the text are different; delete is the scenario where the text contains a

character missing from the pattern; and insert is the converse where the text is missing

a character present in the pattern.

3.2.1 Language Choice

As two important considerations are performance and portability C has been chosen as

the development language. In addition to the powerful performance C has the advantage

of low level flexibility.

3.3 Changes to Baase’s algorithm

The main changes to Baase’s algorithm deal with the differences between finding a pattern

in a text and counting the differences between two sequences.

3.3. CHANGES TO BAASE’S ALGORITHM 13

3.3.1 Value Initialisations

Baase’s algorithm, which finds a pattern within a text, can have points of interest starting

at any point throughout the text. For this it assumes there is a null string which contains

zero matches and thus initialises the first row to zeros. Another approach to this is that

down the first column a null string will have exactly i differences from the pattern at that

point in order to include the possibility of a partial match on the tail end of the pattern

with the initial letters of the text. As this research assumes that the sequences are pre-

aligned at the beginning of the sequence, the null string comparison is unnecessary. In

addition, the fact that we are not searching for a pattern in a string but comparing the

two sequences means that the initial rows and columns will emulate the initial row in the

original algorithm. Instead of the first row being initialised to zeros and the first column

to its index, there are two cases, in the case where the character at the current index

matches the corresponding sequence’s initial character, where all previous are treated as

insert or delete mismatches, or in the case of a mismatch between these two characters,

index plus one, where there are index number of inserts or deletes plus a revision at the

first character.

Relevant code:

D: the two dimensional difference table

minLen: the length of the smaller of the two sequences.

seq0: char array containing the first sequence

seq1: char array containing the other sequence

for(i = 0; i < minLen; i++) {//initial data

D[0][i] = i+(seq0[i]!=seq1[0]?1:0);

D[i][0] = i+(seq0[0]!=seq1[i]?1:0);

}

3.4. SEQUENCE BY SEQUENCE 14

3.3.2 Stop Case and Branch Pruning

Another change to Baase’s algorithm is the stop case. Because there is no longer a pattern

being matched to a text but rather two sequences being compared, both the last row and

last column need to be taken into account for stop cases. As the calculation happens

row by row we should just assume the similar case for the approximate string matching

algorithm. The difference comes in the fact that if any value in the last row is below the

threshold, it, too, counts as a match within the threshold. In addition, a branch pruning

heuristic can be implemented as if an entire row’s results are above the threshold as the

numbers found in the table can never fall again later in the table. This can be seen in

figure 3.2. If the case was that the threshold limited only single difference then we could

conclude that no match has been obtained. This is only possible in this implementation

due to the changes to the value initialisation based on the assumption that the sequences

are aligned to the same place. A similar heuristic would be possible with the original

algorithm but it is of use as each column’s initial value is zero.

3.4 Sequence by Sequence

The general case for building the difference table is implemented the same way that

Baase describes. There are clear similarities when understanding the mechanics of the

both the natural mutations of genes and the approximate string matching algorithm. The

algorithm’s costs (MatchCost, ReviseCost, InsertCost, DeleteCost) can be mapped to the

four alignment options for sequences (Match, Replacement, Insert, Delete). Figure 3.1

shows an example of the approximate string matching algorithm in use, halfway through

building up the difference table.

By comparing this with figure 3.2 the changes mentioned can be observed.

3.4. SEQUENCE BY SEQUENCE 15

Figure 3.1: Approximate String Matching Example

3.4.1 Reverse Compliment

As noted in the previous chapter on DNA sequences, while being represented by a single

string of letters that represent the bases, each character actually represents a base pair,

and due to difficulties in obtaining the data there are no guarantees on the ‘direction’

it is represented. In the case of a reversed gene the reverse compliment can easily be

calculated by reading the sequence in reverse and in place of the base being read, the

base’s pair is substituted. It is possible to apply heuristics to determine when to select

the reverse compliments, such looking at the number of matches attained thus far, but as

it is uncertain which of the sequences might need to be reversed, it is necessary to check

this on any mismatch. However, in the case that a sequence is reversed, it is likely to very

quickly fall through onto a branch pruning as it will have significantly more difference

than the small threshold.

3.5. GROUPING ALGORITHM 16

Figure 3.2: Sequence by Sequence Example

3.5 Grouping Algorithm

Once all the sequences have been compared to each other and it determined if they fall

within the similarity threshold of each other they need to be grouped into similar species.

The initial algorithm used for the grouping of the samples was a greedy algorithm that

first takes sequence with the most matches within the threshold and grouped all those

sequences with it. This however tended to yeild less than optimal results as the sequence

with the most matches tended to be amongst the shortest sequences in the set. This

meant that longer sequences that were grouped with this one often where not themselves

matches with each other. So instead of using the heuristic of sorting by the sequence

with the most matches it was found that sorting by the length of the sequence worked

significantly better. It follows that the resulting groups are no longer displayed with the

largest group first running down to the outliers, but the sequences are grouped in better

matching sets.

3.6. HARDWARE REQUIREMENTS 17

3.6 Hardware Requirements

The hardware requirements to calculate a sample of 10,000 sequences of 400-800 bases long

are as follow: The majority of the memory is consumed by the difference table containing

the difference between each of the sequences. This falls in the order of

n(n-1)/2

bytes. In addition, with the sequence’s data and the difference table for the current

sequence under examination, this totals approximately 200MB.

Chapter 4

Results

4.1 Output

The output of the system as requested by the bioinformaticians is to be sequences grouped

with their best matched group. They also requested the names of all sequences in the

group be available so that they may later be inspected individually. In the meeting the

above was briefly discussed. It was expected that another meeting would take place

with the current output as an examples so that the bioinformaticians could examine and

have further input into how they would like to see the results. Thus the format of the

results is simply the output of the groupings in .csv file format, with the longest sequence

heading the first row, followed by all sequences that fall within the difference threshold

with it and finally a count thereof. Each following line undergoes the same process on the

remaining sequences. In this case, the longest sequence HK2QS7R01BEEV6 happens to

be the only one in its group, but the grouping can be observed in the cases that follow.

The output in table 4.1 is a sample from the output from the processing of the sample

Kowie W1 gDNA.trim.fasta.

18

4.2. PERFORMANCE RESULTS 19

Table 4.1: Output File Example
Processed:Kowie W1 gDNA.trim.fasta at 3.0000 %threshold

Seq[969] HK2QS7R01BEEV6 1
Seq[1827] HK2QS7R01BMIU5 Seq[1020]:HK2QS7R01BM4U3 Seq[1697]:HK2QS7R01AB41M . . .
Seq[1633] HK2QS7R01BADMH Seq[1958]:HK2QS7R01ASAZ4 Seq[2788]:HK2QS7R01BXDXQ . . .
Seq[1616] HK2QS7R01A0MHC Seq[2404]:HK2QS7R01AN3O6 Seq[1456]:HK2QS7R01BAHY0 . . .
Seq[512] HK2QS7R01BI86J Seq[436]:HK2QS7R01BZQ6V Seq[1904]:HK2QS7R01AQWBB . . .
. . .

4.2 Performance Results

Testing was done on a Intel Core i7 870 with 4GB of RAM on Ubuntu 11.10. In order

to obtain statistically accurate results the program was run multiple times on a range of

sample sets of sequences: 25 to 1250 sequences in increments of 25. Four of these tests

were run concurrently on separate data files. The program was modified to limit the

number of sequences to this number rather than considering the entire file, even when the

largest file was used the overhead was still negligible — a fraction of a second compared

to the hours to take to run a sample of that size. In addition, testing was done on the

largest data set available, which contained 11764 sequences the results of which were:

Sequences: 11764

Comparisons: 69189966

Elapsed Time: 38201.69922

Comparisons per second: 1811.175089

This test was run separate from other processing and as a result suffered from less low level

cache swapping. The four larger tests were run concurrently as it is the intention of the

biology department to run multiple samples at the same time rather than utilizing multiple

cores for parallelisation. It is important to first note that in a set of n sequences, (n-1)n/2

comparisons are required, this can be clearly seen on Figure 4.1. We should therefore

expect that the program run in at least order n squared time. This is supported by

Figure 4.2 which shows that the number of comparisons achieved per second is independent

of the scale of the problem. Each of T1 to T4 represent different sample files. The

difference in speed between the fastest, T3, and the slowest, T1, can be explained by

each sample managing to take advantage of the branch pruning at different rates. There

4.2. PERFORMANCE RESULTS 20

might appear to be a slight downward trend to this graph but it should be noted that the

smallest samples were completing in fractions of a second and therefore their accuracy

can not be compared to that of the larger samples. However the larger samples could

be subject to a higher low level cache miss rate. The majority of the processing time

is done on sequence by sequence comparisons. Thus the amount of memory required is

proportional to the length of the sequences and not the total number of sequences being

compared. This can be seen from the fact that the large sample still managed to run at

a high speed.

Figure 4.1: Comparisons Required for X Sequences

Figure 4.2: Comparisons per Second

It can thus be seen from figure 4.3 that there is a linear relationship between the number of

comparisons and processing time. This is further supported by observing that overhead,

4.2. PERFORMANCE RESULTS 21

Table B.5 and Table B.4, everything other than calculating the sequence matches falls to

less than 1/100th of a percentage of the processing time.

Figure 4.3: Overal Time to Complete for X Comparisons

Figure 4.4: Overall Time to Execute for X Sequences

Figure 4.4 confirms these results as a very close relationship between it and the order n

squared plot in Figure 4.1 can be seen.

Chapter 5

Conclusion

5.1 Discussion

The goal of this project is to seek an understanding of bioinformatic sequence analysis and

combine it with string matching algorithms in order to create a specific tool to aid bioin-

formaticians in their research. Their research involves an analysis of large sets of bacterial

DNA in order to group them into inferred species groups by assuming that samples whose

genes are similar within a small threshold are of the same species. Their requirement

came from the fact that there is no existing tool to solve this problem and using the tools

available resulted in them having to do entire alignments of each of the combinations of

sequences. They reported that this took as long as ten days to process. However, taking

into account the fact that an entire alignment is not needed and the assumption that

the sequences are already globally aligned, a variation of Sara Baase’s approximate string

matching algorithm can be applied, which can take into account maximum advantage of

dynamic programming and branch pruning to minimise the required processing at the

critical point of this problem. This is supported by the results showing that the over-

head time for every other part of the program accounted for less than one hundredth of a

percentage of processing time for all but the smallest of samples. In addition the results

showed that concurrent processing of the data achieved a stable rate of 1600 sequences

22

5.2. FUTURE EXTENSIONS 23

per second which means that processing time for the large data sets reported to take ten

days has been reduced to eight to ten hours.

5.2 Future Extensions

5.2.1 Comparative Analysis

One main section that is lacking from this paper is a comparative analysis with other

similar systems. I could not find one with which to compare results and examine algo-

rithms. There are a number of possible reasons for a lack of similar systems primarily, I

would put this to the fact that similarity does not imply homogeneity. The bioinformati-

cians, however, have chosen in their research to assume that it does for this specific gene

under study. In addition, it has been noted that, where possible, DNA strings should

be converted to their corresponding protein sequence before processing, as, due to the

increased complexity of the sequence, they are both shorter and more statically accurate

— meaning that there is less likely to be a chance case of matching bases.

5.2.2 Graphical User Interface

The bioinformaticians mentioned in a discussion that they are not always as computer

literate as those that develop these kinds of systems and as such they would like to interface

with tools like this one through a GUI. Apart from making a GUI for this specific tool it

could be possible to make a GUI that can aid biologists with many tools such as this.

5.2.3 Parallelisation

Noted above as one of the limitations of this project as per the requirements from the

bioinformaticians, parallelisation of this project could yield near linear speed–ups. This is

5.2. FUTURE EXTENSIONS 24

due to the large amount of comparisons that can each be viewed as an independent sub-

problem. In fact, as part of the masters research of Dale Tristrim on GPU arrays, another

student in the Rhodes University Computer Science Department, he has implemented a

similar algorithm and has reported being able to complete processing on a large sample

of sequence data in as little as 12 minutes. He has asked me to check his algorithm and

results to ensure they are correct as this is not the focus of his research and I intend to

do this using the algorithm developed above in the coming month.

Bibliography

[1] Oxford English Dictionary: Bioinformatics. [online]. Accessed on 2 April 2012.

Available from: http://www.oed.com/view/Entry/255935.

[2] Baase, S., and Van Gelder, A. Computer Algorithms: Introduction to Design

and Analysis. Addison-Wesley, 2000.

[3] Baldi, P., and Brunak, S. Bioinformatics: The Machine Learning Approach.

Adaptive Computation and Machine Learning. Mit Press, 2001.

[4] Brudno, M., Do, C. B., Cooper, G. M., Kim, M. F., Davydov, E., Pro-

gram, N. C. S., Green, E. D., Sidow, A., and Batzoglou, S. Lagan

and multi-lagan: Efficient tools for large-scale multiple alignment of genomic dna.

Genome Research 13, 4 (2003), 721–731.

[5] Buckley, M., and Roberts, R. Reconciling microbial systematics and genomics,

2006. American Academy of Microbiology.

[6] Crick, F., and Watson, J. Molecular structure of nucleic acids: A structure for

dna. Nature 171 (April 1953), 737 – 738.

[7] Gibas, C., and Jambeck, P. Developing Bioinformatics Computer Skills. O’Reilly

Series. O’Reilly, 2001.

[8] Huerta, M., Downing, G., Haseltine, F., Seto, B., and Lie, Y. NIH

Working Definition of Bioinformatics and Computational Biology. [online], July

2000. Accessed on 2 April 2012. Available from: http://bisti.nih.gov/docs/

CompuBioDef.pdf.

25

BIBLIOGRAPHY 26

[9] Jones, N., and Pevzner, P. An Introduction To Bioinformatics Algorithms.

Computational Molecular Biology. Mit Press, 2004.

[10] Kanehisa, M. Post-Genome Informatics. Post-genome Informatics. Oxford Uni-

versity Press, 2000.

[11] Krawetz, S., and Womble, D. Introduction to Bioinformatics: A Theoretical

And Practical Approach. Humana Press, 2003.

[12] Li, H., and Homer, N. A survey of sequence alignment algorithms for next-

generation sequencing. Briefings in Bioinformatics 11, 5 (2010), 473–483.

[13] Nardone, J., Lee, D. U., Ansel, K. M., and Rao, A. Bioinformatics for the

’bench biologist’: how to find regulatory regions in genomic dna. Nature Immunology

5, 8 (Aug. 2004), 768–774.

[14] Tramontano, A. Introduction to Bioinformatics. Chapman and Hall mathematics

series. Chapman & Hall/CRC, 2007.

[15] Won, J.-I., Park, S., Yoon, J.-H., and Kim, S.-W. An efficient approach

for sequence matching in large dna databases. Journal of Information Science 32, 1

(2006), 88–104.

[16] Xu, D., Keller, J., Popescu, M., and Bondugula, R. Applications of Fuzzy

Logic in Bioinformatics. Series on Advances in Bioinformatics and Computational

Biology. Imperial College Press, 2008.

Appendix A

Code

#include <stdlib.h>

#include <stdio.h>

#include <string.h>

#include <sys/stat.h>

#include <time.h>

typedef struct{

int index;

char *sequenceName;

char *sequenceData;

char *revComp;

int sequencelen;

int count;

int used;

//could add an array of pointers to all the sequences that fall within

// the threshold. this enabling any sequence to be selected as a

// group at the choice of the bioinformaticians

} SequenceStruct;

27

28

int LoadFile(char *filename, char* data[], long *filesize);

int CountSequences(char* data, long length);

int LocateSequences(char* data, long length, SequenceStruct *sequences[]);

short int Match(char* seq0, char* seq1, int minLen, float t);

int RevComp(char* sequenceData,char* revComp,int length);

//the two cmp methods for the above struct

int struct_cmp_count(const void *a, const void *b) {

const SequenceStruct *ia = *(const SequenceStruct **) a;

const SequenceStruct *ib = *(const SequenceStruct **) b;

return ib->count - ia->count;

}

int struct_cmp_len(const void *a, const void *b) {

const SequenceStruct *ia = *(const SequenceStruct **) a;

const SequenceStruct *ib = *(const SequenceStruct **) b;

return ib->sequencelen - ia->sequencelen;

}

int main(int argc, char *argv[])

{

clock_t c0, c1;//clocks used for timings

int i,j;//variables for loops

long length; // the length of the data file.

char *data; // a variable to hold the file data - this data will be

//manipulated and the Sequence Array will have pointers into this data.

SequenceStruct **s;//array to hold all information that

//pertains to the DNA sequences

float threshold = 0.03f;// matches will be considered less than this %

29

if (argc == 3) {

if (0 == sscanf(argv[2], "%f", &threshold)

||threshold>1||threshold<0) {

printf("Threshold incorrect format\n");

return 0;

}

}

printf("Threshold set at %f %%\n",threshold*100);

char* filename = argv[1];

if (0 != LoadFile(filename, &data, &length)) { return 1; }

// memory has been allocated to data, remember to free it up

//File Loaded.

int numSequences = CountSequences(data, length);

if (0==numSequences) {

printf("No Sequences found. Incorrect input file or bad format?\n");

return 0;

}

//we now know how many sequences we are dealing with.

s = malloc(numSequences*sizeof(SequenceStruct*));

//allocated space for the sequence array

for(i = 0; i < numSequences; i++) {

s[i] = malloc(sizeof(SequenceStruct));

s[i]->index = i;

//s[i]->sequencelen = strlen(s[i]->sequenceData);

//not calculated yet line moved below

s[i]->count = 0;

30

s[i]->used = 0;

s[i]->revComp = NULL;

}

printf("%d sequences found in the file.\n",numSequences);

if (0!=LocateSequences(data,length,s)) {

free(s);

return 1;

}

// now we have found the sequences with no problems.

// build the difference table and we can also now allocate

// the sequence lengths as they have been calculated now

short int **D;

D = malloc(numSequences*sizeof(int*));

for (i=0;i<numSequences;i++) {

D[i] = malloc(numSequences*sizeof(int));

//this line moved here as after LocateSequences

s[i]->sequencelen = strlen(s[i]->sequenceData);

s[i]->revComp=malloc(s[i]->sequencelen*sizeof(char));

sprintf(s[i]->revComp,"X\0");

}

//--

printf("-- Matching Loop --\n");

// this is where the bulk of the processing occurs

int totalcomparisons = (numSequences-1)*numSequences/2;

//the number of comparisons required for this number of sequences

c0 = clock();//start the clock to time the comparisons

for(i = 0; i < numSequences; i++) {

for(j = 0; j < numSequences; j++) {

if (j==i) { D[i][j] = -1; }

31

else if (j<i) { D[i][j] = D[j][i]; }

else {

int minLen = s[i]->sequencelen<s[j]->sequencelen?

s[i]->sequencelen:s[j]->sequencelen;

D[i][j] = Match(s[i]->sequenceData,s[j]->sequenceData,minLen,threshold);

if (0==D[i][j]) {

if (s[j]->revComp[0] == ’X’)

RevComp(s[j]->sequenceData,s[j]->revComp,s[j]->sequencelen);

//lazily evaluate if we need the revComp or not.

D[i][j] = Match(s[i]->sequenceData,s[j]->revComp,minLen,threshold);

}

if (1==D[i][j]) {

s[i]->count++;

s[j]->count++;

}

}

}

c1 = clock();

float elapsedtime = (float) (c1 - c0) / CLOCKS_PER_SEC;

int remainingsequences = (numSequences - i - 1);//improve these calculations

int remainingcomparisons = (remainingsequences - 1) * remainingsequences / 2;

float estimated = elapsedtime/(totalcomparisons - remainingcomparisons)

* remainingcomparisons;

//console output

printf("\rSequence[%.5d]:%s %4.d matches within threshold.

Elapsed: %.3f ~Remaining: %.3f ~Total:%.2f "

, i, s[i]->sequenceName,s[i]->count,

elapsedtime, estimated, elapsedtime + estimated);

fflush(stdout);

}

32

c1 = clock();

float sec = (float) (c1 - c0)/CLOCKS_PER_SEC;

printf("\n\nSequences:%d\tComparisons:%d\tElapsed Time: %f

\tComparisons per second: %f\n"

,numSequences,totalcomparisons,sec,totalcomparisons/sec);

// at this point we have the lists of all sequences and if they meet the

// threshold match to each other and a count of how many matches they make

//--

/*printf("Writing Difference Table To File\n");

FILE *f;//Result file to view number of differences between all sequences.

f = fopen("Output/DifferenceTable.csv","w");

for(i = -1; i < numSequences; i++) {

for(j = -1; j < numSequences; j++) {

if (i == -1) {

if(j == -1) { fprintf(f,",,"); }

else { fprintf(f,"Seq[%d],",s[j]->index); }

}

else {

if(j == -1) { fprintf(f,"%d,Seq[%d],",s[i]->sequencelen,s[i]->index); }

else { fprintf(f,"%4d,",D[s[i]->index][s[j]->index]); }

}

}

if (i == -1) { fprintf(f,",Matches,\n"); }

else { fprintf(f,",,%d\n",s[i]->count); }

}

fclose(f);*/

//--

//qsort(s, numSequences, sizeof(SequenceStruct*), struct_cmp_count);

qsort(s, numSequences, sizeof(SequenceStruct*), struct_cmp_len);

33

//make and arg to allow for the choice between

//the longest and the best matches?

FILE *f2;

//Result file to view the sequences that match within the threshold

// - the species groupings

int filenamelen = strlen(filename);

char *outputfilename = malloc((18+filenamelen)*sizeof(char));

sprintf(outputfilename,"MatchesFound-%s.csv\0",filename);

f2 = fopen(outputfilename,"w");

fprintf(f2,"Processed:%s at %f %%threshold\n",filename,threshold*100);

int current_index;

for(i = 0; i < numSequences; i++) {

if (s[i]->used == 0)

{

int count = 1;

current_index = s[i]->index;

s[i]->used = 1;

fprintf(f2,"Seq[%d],%s,",s[i]->index,s[i]->sequenceName);

for(j = i+1; j < numSequences; j++) {

if (s[j]->used == 0 && D[current_index][s[j]->index]==1) {

fprintf(f2,"Seq[%d]:%s,",s[j]->index,s[j]->sequenceName);

count++;

s[j]->used = 1;

}

}

fprintf(f2,",%d\n",count);

//would be nice to have this at the begining of

// the line following the initial sequence

}

}

34

fclose(f2);

printf("Done writing file: %s\n",outputfilename);

//--

for (i = 0;i<numSequences;i++) {//free all data

free(D[i]);

free(s[i]->revComp);

free(s[i]);

}

free(outputfilename);

free(D);

free(data);

free(s);

return 0;

}

//return of 0 means mismatch return of 1 means match

short int Match(char* seq0, char* seq1, int minLen, float t){

//include threshold for branch pruning

int i,j;

int threshold = (int)(t*minLen);//same difference as floorf

int **D;// the difference table

D = malloc(minLen*sizeof(int*));

for (i=0;i<minLen;i++) {

D[i] = malloc(minLen*sizeof(int));

for (j=0;j<minLen;j++) {

D[i][j] = threshold+2;

}

}

for(i = 0; i < minLen; i++) {//initial data

D[0][i] = i+(seq0[i]!=seq1[0]?1:0);

35

D[i][0] = i+(seq0[0]!=seq1[i]?1:0);

}

//for(i = 0; i < minLen; i++) D[i][0] = i+(seq0[0]!=seq1[i]?1:0);

//incorperated these two loops into a single one

//for(j = 0; j < minLen; j++) D[0][j] = j+(seq0[j]!=seq1[0]?1:0);

short int match = -1;

int minmatches;

for(i = 1; i < minLen; i++) {

minmatches = minLen;

for(j = 1; j < minLen; j++) {

//MatchCost or ReviseCost

int x = D[i-1][j-1]+(seq0[i]!=seq1[j]?1:0);

//min of the InsertCost and DeleteCosts

int y = (D[i][j-1]<D[i-1][j]?D[i][j-1]:D[i-1][j])+1;

//Min

D[i][j] = y<x?y:x;

if (D[i][j] < minmatches) minmatches = D[i][j];

}

if (minmatches>threshold) {

//as the algorithm can never yeild a result below this value

// we can break out of the loop knowing this is a mismatch.

for (i = 0;i<minLen;i++) free(D[i]);

free(D);

return 0;

}

if(D[i][minLen-1]<=threshold) {

//successful match found

for (i = 0;i<minLen;i++) free(D[i]);

free(D);

return 1;

36

}

}

//just a note it is unlikely to reach here

for (i = 0;i<minLen;i++) free(D[i]);

free(D);

if (match == -1 && minmatches<=threshold) return 1;

return 0;

}

int LoadFile(char* filename, char* data[], long *filesize) {

//Check Valid filename? File exists etc...

printf("Loading file: %s\n",filename);

FILE* file = fopen(filename,"rb");

if (NULL == file) {//ERROR: Cannot open file

printf("Error: Cannot open file ’%s’\n\n",filename);

return 1;

}

if (-1 == fseek(file, 0L, SEEK_END)) {//Error: Problem Reading File

fclose(file);

printf("Error: Problem Reading File ’%s’\nfseek(end)\n",filename);

return 2;

}

long fs = ftell(file);

*filesize = fs;

if (*filesize == -1) {//Error: Problem Reading File

fclose(file);

printf("Error: Problem Reading File ’%s’\nftell\n",filename);

return 2;

}

if (-1 == fseek(file, 0L, SEEK_SET)) {//Error: Problem Reading File

37

fclose(file);

printf("Error: Problem Reading File ’%s’\nfseek(set)\n",filename);

return 2;

}

//Alternate code which would be more condenced but encountered an error

//if (-1 == fseek(file, 0L, SEEK_END)||

// -1 == *(filesize = ftell(file))||

// -1 == fseek(file, 0L, SEEK_SET)) {//error

// fclose(file);

// printf("Error: Problem Reading File ’%s’\n\n",filename);

// return 2;

//}

printf("Reading file data...");

data = malloc(sizeof(char)(*filesize+1));

if (NULL == data) {//Error: Encountered a problem allocating memory

printf("Error: Encountered a problem allocating memory\n\n");

return 3;

}

size_t n = fread(*data,sizeof(char),*filesize,file);

fclose(file);

if (n<1) {//Error: Problem Reading File

free(data);

printf("Error: Problem Reading File ’%s’\n\n",filename);

return 4;

}

*(*data+n) = ’\0’;// string terminating null character

printf("Done.\n");

return 0;

}

38

int CountSequences(char* data, long length) {

//search for the sequences... ASSUMES ’>’ is reserved for the

//begining of the header line and nowhere else (not in the comments etc.)

int i = 0, c = 0;

for (; i < length; i++) { if (data[i] == ’>’) c++; }

return c;

}

//int LocateSequences(char* data, long length, SequenceStruct sequences[]);

int LocateSequences(char* data, //Data from the FASTA File Format

long length, //the length of the file data

SequenceStruct *sequences[]) {

// returns 0 if no errors are encountered

printf("Locating Sequences...");

int i = 0, //the index of the character in the file under examination

j = 0, //the index for the destination of the current

//character in the resulting data.

c = 0; //the sequence under examination

//ensure first character is a ’>’

if (data[i]!=’>’) {//ERROR: File does not begin with header line

printf("Error: Bad file format - Does not being with a header line\n\n");

return 1;

}

for (; i < length; i++) {

switch(data[i])

{

case ’>’:

data[j++] = ’\0’;

sequences[c]->sequenceName=&data[i+1];

39

while (i<length && !(data[i]==’\n’||data[i]==’\r’))

{

if (data[i]==’ ’)

{

data[i] = ’\0’;

}

i++;

}

data[i] = ’\0’;

i++;

if (i >= length){//ERROR: We should not expect to find the end of file here

printf("Error: Unexpected end of file\n");

return 2;

}

//we are looking at the beinging of the next sequence’s data

//printf("Found sequence[%d] at %d\n",c,i);

sequences[c++]->sequenceData=&data[i];

j=i+1;//Abnormal details might cause a problem here,

//such as sequences of 1 or 0 bases which really should never occur.

break;

case ’\n’:

case ’\r’:

break;//skip newlines

case ’A’://Expected or Allowed Data

case ’C’:

case ’G’:

case ’T’:

//here we could add more cases for things like ’N’ which means any

//- but special allowances need to be made in the Match method

//as an N matching an N would result in a mismatch instead of a match.

40

*(data+j++) = *(data+i);

break;

default:

printf("Error: Bad file format or format not supported.

\nFound character %c at byte %d\n\n",data[i],i);

return 3;

break;

}

}

*(data+j++) = ’\0’;//string terminating null character

printf("Done!\n");

return 0;

}

int RevComp(char* sequenceData,char* revComp,int length){

int i;

for (i = length;i>=0;--i)

{

char c = sequenceData[i];

if (c == ’T’) c = ’A’;

else if (c == ’A’) c = ’T’;

else if (c == ’C’) c = ’G’;

else if (c == ’G’) c = ’C’;

revComp[length-i-1]=c;

}

return 0;

}

Appendix B

Data Results

Table B.1: Large Dataset Runtime

Sequences 11764
Comparisons 69189966

Elapsed Time (s) 38201.69922
Comparisons per second 1811.175089

41

42

Table B.2: Time to complete for x sequences

sequences comparisons T1 T2 T3 T4
25 300 0.21 0.2 0.19 0.21
50 1225 0.81 0.73 0.7 0.67
75 2775 1.79 1.68 1.56 1.6
100 4950 3.23 3.08 2.83 2.92
125 7750 4.92 4.68 4.41 4.64
150 11175 7.38 6.75 6.3 6.75
175 15225 9.82 9.17 8.88 9.47
200 19900 12.66 12.24 11.42 12.25
225 25200 16.64 15.36 14.35 15.78
250 31125 20.48 19.64 17.37 19.04
275 37675 24.59 23.8 21.44 23.2
300 44850 29.44 27.33 26.35 27.99
325 52650 34.57 32.45 30.13 33.14
350 61075 39.8 37.91 35.38 37.59
375 70125 46.04 44.01 41.59 42.63
400 79800 51.82 50.43 47.01 49.8
425 90100 58.84 56.34 53.91 57.12
450 101025 66.59 61.98 60.21 63.18
475 112575 74.88 68.81 66.46 70.85
500 124750 81.69 77.5 73.94 78.49
525 137550 88.72 87.48 81.43 86.5
550 150975 96.85 95.1 88.41 95.07
575 165025 106.48 102.61 96.72 103.29
600 179700 117.11 111.55 105.39 112.39
625 195000 127.23 120.28 112.35 121.23
650 210925 136.66 132.39 123.71 136.67
675 227475 147.22 144.56 133.89 144.35
700 244650 156.26 152.75 148.32 155.63
725 262450 171.27 165.96 156.69 166.05
750 280875 179.83 175.13 167.15 177.26
775 299925 194.92 190.3 181.02 188.64
800 319600 207.08 202.2 191.18 203.2
825 339900 224.51 213.39 201.67 216.14
850 360825 236.26 227.82 216.67 224.98
875 382375 251.62 239.4 229.2 240.33
900 404550 261.53 255.28 244.43 258
925 427350 277.35 271.5 259.82 271.6
950 450775 295.05 288.41 268.18 281.88
975 474825 310.45 298.19 283.1 297.53
1000 499500 326.11 313.61 299.28 314.05
1025 524800 341.72 330.99 311.45 331.2
1050 550725 361.78 346.54 333.36 343.27
1075 577275 377.12 362.08 348.31 366.37
1100 604450 396.28 379.15 365.9 381.84
1125 632250 412.14 395 378.85 402.18
1150 660675 432.17 417.73 397.05 419.37
1175 689725 452.79 435.86 418.8 433.74
1200 719400 474.19 449.43 433.81 453.54
1225 749700 499.45 476.79 455.08 490.96
1250 780625 476.11 494 490.19 493.61

43

Table B.3: Comparisons Achieved per Second

sequences comparisons T1 T2 T3 T4 Average
25 300 1428.57 1500 1578.95 1428.57
50 1225 1512.35 1678.08 1750 1828.36
75 2775 1550.28 1651.79 1778.85 1734.38
100 4950 1532.51 1607.14 1749.12 1695.21
125 7750 1575.2 1655.98 1757.37 1670.26
150 11175 1514.23 1655.56 1773.81 1655.56
175 15225 1550.41 1660.31 1714.53 1607.71
200 19900 1571.88 1625.82 1742.56 1624.49
225 25200 1514.42 1640.63 1756.1 1596.96
250 31125 1519.78 1584.78 1791.88 1634.72
275 37675 1532.13 1582.98 1757.23 1623.92
300 44850 1523.44 1641.05 1702.09 1602.36
325 52650 1523 1622.5 1747.43 1588.71
350 61075 1534.55 1611.05 1726.26 1624.77
375 70125 1523.13 1593.39 1686.1 1644.97
400 79800 1539.95 1582.39 1697.51 1602.41
425 90100 1531.27 1599.22 1671.3 1577.38
450 101025 1517.12 1629.96 1677.88 1599
475 112575 1503.41 1636.03 1693.88 1588.92
500 124750 1527.11 1609.68 1687.18 1589.37
525 137550 1550.38 1572.36 1689.18 1590.17
550 150975 1558.85 1587.54 1707.67 1588.04
575 165025 1549.82 1608.27 1706.21 1597.69
600 179700 1534.45 1610.94 1705.1 1598.9
625 195000 1532.66 1621.22 1735.65 1608.51
650 210925 1543.43 1593.21 1705 1543.32
675 227475 1545.14 1573.57 1698.97 1575.86
700 244650 1565.66 1601.64 1649.47 1572
725 262450 1532.38 1581.41 1674.96 1580.55
750 280875 1561.89 1603.81 1680.38 1584.54
775 299925 1538.71 1576.06 1656.86 1589.93
800 319600 1543.36 1580.61 1671.72 1572.83
825 339900 1513.96 1592.86 1685.43 1572.59
850 360825 1527.24 1583.82 1665.32 1603.81
875 382375 1519.65 1597.22 1668.3 1591.04
900 404550 1546.86 1584.73 1655.08 1568.02
925 427350 1540.83 1574.03 1644.79 1573.45
950 450775 1527.79 1562.97 1680.87 1599.17
975 474825 1529.47 1592.36 1677.23 1595.89
1000 499500 1531.69 1592.74 1669.01 1590.51
1025 524800 1535.76 1585.55 1685.02 1584.54
1050 550725 1522.26 1589.21 1652.04 1604.35
1075 577275 1530.75 1594.33 1657.36 1575.66
1100 604450 1525.31 1594.22 1651.95 1582.99
1125 632250 1534.07 1600.63 1668.87 1572.06
1150 660675 1528.74 1581.58 1663.96 1575.4
1175 689725 1523.28 1582.45 1646.91 1590.18
1200 719400 1517.11 1600.69 1658.33 1586.19
1225 749700 1501.05 1572.39 1647.4 1527.01
1250 780625 1639.59 1580.21 1592.49 1581.46 1606.52

44

Table B.4: Overhead Time

sequences comparisons T1 T2 T3 T4
25 300 0.01 0.01 0.04 0.04
50 1225 0.01 0.02 0.04 0.05
75 2775 0 0.02 0.04 0.04
100 4950 0 0.02 0.04 0.04
125 7750 0 0.02 0.04 0.04
150 11175 0.01 0.02 0.04 0.04
175 15225 0.01 0.01 0.04 0.05
200 19900 0.01 0.01 0.04 0.04
225 25200 0.01 0.01 0.04 0.04
250 31125 0.01 0.02 0.04 0.04
275 37675 0.01 0.03 0.04 0.04
300 44850 0.01 0.03 0.04 0.05
325 52650 0 0.02 0.04 0.05
350 61075 0 0.03 0.04 0.04
375 70125 0.01 0.02 0.04 0.04
400 79800 0.01 0.02 0.04 0.04
425 90100 0.01 0.02 0.05 0.05
450 101025 0.01 0.01 0.05 0.04
475 112575 0.01 0.02 0.04 0.04
500 124750 0.01 0.02 0.05 0.04
525 137550 0 0.02 0.04 0.04
550 150975 0.01 0.02 0.04 0.04
575 165025 0 0.02 0.04 0.04
600 179700 0.01 0.02 0.04 0.04
625 195000 0.01 0.01 0.04 0.04
650 210925 0.01 0.02 0.04 0.05
675 227475 0.01 0.01 0.04 0.04
700 244650 0.01 0.02 0.06 0.04
725 262450 0 0.02 0.04 0.04
750 280875 0 0.02 0.04 0.05
775 299925 0.01 0.02 0.05 0.04
800 319600 0.01 0.03 0.04 0.06
825 339900 0.01 0.02 0.04 0.05
850 360825 0 0.01 0.04 0.06
875 382375 0.01 0.01 0.05 0.05
900 404550 0.01 0.02 0.05 0.04
925 427350 0.02 0.01 0.04 0.05
950 450775 0.01 0.01 0.04 0.05
975 474825 0 0.02 0.04 0.04
1000 499500 0.01 0.02 0.05 0.04
1025 524800 0.01 0.03 0.05 0.04
1050 550725 0.01 0.01 0.04 0.05
1075 577275 0.01 0.02 0.04 0.04
1100 604450 0 0.02 0.04 0.05
1125 632250 0.01 0.02 0.04 0.06
1150 660675 0.02 0.02 0.04 0.04
1175 689725 0 0.03 0.05 0.04
1200 719400 0 0.02 0.05 0.04
1225 749700 0.01 0.03 0.04 0.04
1250 780625 0 0.02 0.04 0.04

45

Table B.5: Overhead Percentage

sequences comparisons T1 T2 T3 T4
25 300 4.76% 5% 21.05% 19.05%
50 1225 1.23% 2.74% 5.71% 7.46%
75 2775 0% 1.19% 2.56% 2.5%
100 4950 0% 0.65% 1.41% 1.37%
125 7750 0% 0.43% 0.91% 0.86%
150 11175 0.14% 0.3% 0.63% 0.59%
175 15225 0.1% 0.11% 0.45% 0.53%
200 19900 0.08% 0.08% 0.35% 0.33%
225 25200 0.06% 0.07% 0.28% 0.25%
250 31125 0.05% 0.1% 0.23% 0.21%
275 37675 0.04% 0.13% 0.19% 0.17%
300 44850 0.03% 0.11% 0.15% 0.18%
325 52650 0% 0.06% 0.13% 0.15%
350 61075 0% 0.08% 0.11% 0.11%
375 70125 0.02% 0.05% 0.1% 0.09%
400 79800 0.02% 0.04% 0.09% 0.08%
425 90100 0.02% 0.04% 0.09% 0.09%
450 101025 0.02% 0.02% 0.08% 0.06%
475 112575 0.01% 0.03% 0.06% 0.06%
500 124750 0.01% 0.03% 0.07% 0.05%
525 137550 0% 0.02% 0.05% 0.05%
550 150975 0.01% 0.02% 0.05% 0.04%
575 165025 0% 0.02% 0.04% 0.04%
600 179700 0.01% 0.02% 0.04% 0.04%
625 195000 0.01% 0.01% 0.04% 0.03%
650 210925 0.01% 0.02% 0.03% 0.04%
675 227475 0.01% 0.01% 0.03% 0.03%
700 244650 0.01% 0.01% 0.04% 0.03%
725 262450 0% 0.01% 0.03% 0.02%
750 280875 0% 0.01% 0.02% 0.03%
775 299925 0.01% 0.01% 0.03% 0.02%
800 319600 0% 0.01% 0.02% 0.03%
825 339900 0% 0.01% 0.02% 0.02%
850 360825 0% 0% 0.02% 0.03%
875 382375 0% 0% 0.02% 0.02%
900 404550 0% 0.01% 0.02% 0.02%
925 427350 0.01% 0% 0.02% 0.02%
950 450775 0% 0% 0.01% 0.02%
975 474825 0% 0.01% 0.01% 0.01%
1000 499500 0% 0.01% 0.02% 0.01%
1025 524800 0% 0.01% 0.02% 0.01%
1050 550725 0% 0% 0.01% 0.01%
1075 577275 0% 0.01% 0.01% 0.01%
1100 604450 0% 0.01% 0.01% 0.01%
1125 632250 0% 0.01% 0.01% 0.01%
1150 660675 0% 0% 0.01% 0.01%
1175 689725 0% 0.01% 0.01% 0.01%
1200 719400 0% 0% 0.01% 0.01%
1225 749700 0% 0.01% 0.01% 0.01%
1250 780625 0% 0% 0.01% 0.01%

