
High-Speed Policy-based Packet Forwarding Using E�cient Multi-dimensionalRange MatchingT.V. Lakshman and D. StiliadisBell Laboratories101 Crawfords Corner Rd.Holmdel, NJ 07733flakshman, stiliadi g@bell-labs.comAbstractThe ability to provide di�erentiated services to users withwidely varying requirements is becoming increasingly im-portant, and Internet Service Providers would like to pro-vide these di�erentiated services using the same shared net-work infrastructure. The key mechanism, that enables dif-ferentiation in a connectionless network, is the packet clas-si�cation function that parses the headers of the packets,and after determining their context, classi�es them basedon administrative policies or real-time reservation decisions.Packet classi�cation, however, is a complex operation thatcan become the bottleneck in routers that try to supportgigabit link capacities. Hence, many proposals for di�er-entiated services only require classi�cation at lower speededge routers and also avoid classi�cation based on multiple�elds in the packet header even if it might be advantageousto service providers. In this paper, we present new packetclassi�cation schemes that, with a worst-case and tra�c-independent performance metric, can classify packets, bychecking amongst a few thousand �ltering rules, at rates ofa million packets per second using range matches on morethan 4 packet header �elds. For a special case of classi�ca-tion in two dimensions, we present an algorithm that canhandle more than 128K rules at these speeds in a tra�c in-dependent manner. We emphasize worst-case performanceover average case performance because providing di�erenti-ated services requires intelligent queueing and scheduling ofpackets that precludes any signi�cant queueing before thedi�erentiating step (i.e., before packet classi�cation). Thepresented �ltering or classi�cation schemes can be used toclassify packets for security policy enforcement, applying re-source management decisions,
ow identi�cation for RSVPreservations, multicast look-ups, and for source-destinationand policy based routing. The scalability and performanceof the algorithms have been demonstrated by implementa-tion and testing in a prototype system.

1 IntroductionThe transformation of the Internet into an important com-mercial infrastructure has signi�cantly changed user expec-tations in terms of performance, security, and services. In-ternet Service Providers, while using a shared backbone in-frastructure, would like to provide di�erent services to dif-ferent customers based on di�erent service pricing or basedon widely varying customer requirements. For providing thisdi�erentiated service, service providers need mechanisms forisolating tra�c from di�erent customers, for preventing unau-thorized users from accessing speci�c parts of the network,and for providing customizable performance and bandwidthin accordance with customer expectations and pricing. Inaddition, service providers need mechanisms that allow rout-ing decisions to be made not just based on destination ad-dresses and the shortest path to it, but also based on con-tracts between service providers or between a service providerand a customer [14]. Consequently, routers (or packet for-warding engines in general) used in both enterprise andbackbone environments should be able to provide networkmanagers with the proper mechanisms that will allow theprovisioning of these features.Forwarding engines must be able to identify the contextof packets and must be able to apply the necessary actionsso as to satisfy the user requirements. Such actions may bethe dropping of unauthorized packets, redirection of packetsto proxy servers, special queueing and scheduling actions,or routing decisions based on a criteria other than the des-tination address. In the paper, we use interchangeably theterms packet �ltering or packet classi�cation to denote themechanisms that support the above functions.Speci�cally, the packet �ltering mechanisms should parsea large portion of the packet header, including informationon the transport protocols, before a forwarding decision ismade�. The parsing results in the incoming packet beingclassi�ed using a set of rules that have been de�ned by net-work management software or real-time reservation proto-cols such as RSVP.Packet �ltering functionality is required for example whena router is placed between an enterprise network and a corebackbone network. The router must have the ability to blockall unauthorized accesses that are initiated from the publicnetwork and are destined to the enterprise network. Onthe other hand, if accesses are initiated from a remote site�Forwarding based on transport level information is also referredto as layer-4 forwarding.

of the enterprise network, they can be forwarded into theintranet and this requires �ltering ability. If this level ofsecurity is not enough, another policy requirement mightbe that authorized access attempts from the public networkbe forwarded to an application level proxy server that willauthenticate the access. Clearly, �ltering mechanisms arevery useful at the edge of an enterprise network. In an edgenetwork node, the router might need to identify the tra�cthat is initiated from speci�c customers, and either policeit or shape it to meet a prede�ned contract. Indeed, theseare the actions that are required by some of the di�erenti-ated services model proposals that are being considered forstandardization by the IETF [10].It is evident that most �lter rules naturally apply to awhole range of addresses, port numbers, or protocols, andnot just to single prede�ned hosts or applications. Aggre-gation, for instance of addresses, is not only required be-cause customers are usually allocated blocks of addresses,but also because it is necessary to keep the network manage-able. Therefore, the speci�cation of the packet classi�cationpolicies must allow aggregations in their de�nitions. Thismeans that packet classi�cation algorithms must be be ableto process rules that de�ne combinations of ranges of values.If the algorithms can only handle exact values and do notsupport aggregation, preprocessing is required to translatethe ranges to exact values. This is infeasible since rangescan grow exponentially with length of the packet �eld onwhich the ranges are de�ned.A trend worth noting is that even though packet �lteringwas thought of as a tool necessary only at the network ac-cess points and mainly for �rewall or security applications,it is now becoming apparent that it is a valuable tool forperforming tra�c engineering and meeting the new servicerequirements of the commercial Internet. Filtering policiesthat use the full information of the packet header can bede�ned for distributing the available system or network re-sources. The main consequence of these new uses is thatall packet classi�cation actions must be performed at wire-speed, i.e., the forwarding engines must have enough pro-cessing power to be able to process every arriving packetwithout queueing since without header processing it is notpossible to di�erentiate packets to provide di�erentiated ser-vices.The main contributions of this paper are algorithms thatuse multi-dimensional range matching that enable Gigabitrouters to provide wire-speed packet �ltering and classi-�cation in a tra�c independent manner (i.e. we do notrely on tra�c dependent caching or average case results toachieve fast execution times). To our knowledge, our pro-posed schemes are the �rst schemes that allow thousands of�lter rules to be processed at speeds of millions of packetsper second with range matches on 5 or more packet �eldsin a tra�c independent manner. Speci�cally, we presentthree algorithms: The �rst algorithm takes advantage ofbit-level parallelism which combined with very elementarybit-operations results in a scheme that supports a large num-ber of �lter rules. The second algorithm extends the perfor-mance of the �rst algorithm by making e�cient use of mem-ory. It provides a means for balancing the the time-spacetradeo� in implementation, and allows optimization for aparticular system taking into account the available time forpacket processing, the available memory, and the numberof �lter rules to be processed. Furthermore, the algorithmallows on-chip memory to be used in an e�cient and tra�cindependent manner for reducing worst-case execution time.This is unlike typical caching schemes which are heavily traf-

�c dependent and only improve average case performance.The performance metric for all our schemes is worst-caseexecution time, simple operations to make it amenable tohardware implementation if necessary, and space require-ments which are feasible with current memory technologyand costs. The implementation simplicity, scalability andperformance of our �ltering have been demonstrated in aprototype router with interfaces operating at a million pack-ets per second.Our third algorithm considers the special case of �lterrules on two �elds. This is motivated by important appli-cations such look-ups for multicast tra�c forwarding andpolicy-based routing. To elaborate on this example, whena forwarding engine supports a multicast protocol like PIM(sparse mode or dense mode) [13] or DVMRP [26], the for-warding decision has to be made on both the source addressvalue and the multicast group value. Depending on the pro-tocol, the forwarding engine may have a forwarding entryfor a given group value irrespective of source addresses, andalso have forwarding entries for a given group value andsource subnet. Given the increasing importance of multi-cast forwarding in the Internet, it would be ideal if a simplealgorithm could be used for making multicast forwardingdecisions. Since the search for the source addresses may usethe same forwarding information base as that used for uni-cast routing, the same type of CIDR (Classless Inter-DomainRouting) aggregations [15] are likely to be used. CIDR ag-gregations introduced the notion of pre�x in the de�nitionof routing entries. In other words an entry in the forwardingbase is de�ned as a value and a mask. The mask de�nes thenumber of bits of the destination address of a packet thatcan be ignored when trying to match the destination ad-dress of the packet to the particular entry of the forwardingbase. The bits that can be masked-out are always in theless signi�cant portion of the address. Thus, the values inthe forwarding engines can thought as pre�xes. For the caseof IPv4, pre�xes can have a length between 1 and 32 bits.We present a linear space, O(pre�x length) scheme whichcan be used to implement 2-dimensional lookups at rates ofmillions of packets per second for more than 128K entries inthe forwarding table. Considering that multicast forwardingtables in the core backbone might include several hundredsof thousands of entries, even a solution that uses O(n log n)space with a moderate constant or O(log2n) time may notbe feasible when the number of entries n is that high.2 Design GoalsWe �rst try to identify the main requirements that a packetclassi�cation algorithm must satisfy in order to be useful inpractice.2.1 The Requirement for Real-Time OperationTraditional router architectures are based on
ow-cache ar-chitectures to classify packets. The basic idea is that packetarrivals de�ne
ows [9, 17], in the sense that if a packet be-longing to a new
ow arrives, then more packets belongingto that
ow can be expected to arrive in the near future.With this expected behavior, the �rst packet of a
ow isprocessed through a slow path that analyzes the completeheader. The header of the packet is then inserted into acache or hash table together with the action that must beapplied to the �rst packet as well as to all other packets ofthe
ow. When subsequent packets of that
ow arrive the

corresponding action can be determined from the cache orhash table.There are three main problems associated with this archi-tecture or any similar cache-based architecture when appliedto current Internet requirements:1. In current backbone routers, the number of
ows thatare active at a given interface is extremely high. Re-cent studies have shown that an OC-3 interface mighthave an average of 256K
ows active concurrently [24]y. For this many number of
ows, use of hardwarecaches is extremely di�cult, especially if we considerthe fact that a fully-associative hardware cache may berequired. Caches of such size will most likely be imple-mented as hash tables since hash tables can be scaledto these sizes. However, the O(1) look-up time of ahash table is an average case result and the worst-caseperformance of a hash table can be poor since multipleheaders might hash into the same location. The num-ber of bits in the packet headers that must be parsedis typically between 100 and 200 bits, and even hashtables are limited to only a couple of million entries.So any hash function that is used must be able to ran-domly distribute 100 to 200 bit keys of the header tono more than 20-24 bits of hash index. Since there isno knowledge about the distribution of the header val-ues of the packets that arrive to the router, the designa good hash function is not trivial.2. Due to the large number of
ows that are simultane-ously active in a router and due to the fact that hashtables generally cannot guarantee good hashing underall arrival patterns, the performance of cache basedschemes is heavily tra�c dependent. If a large num-ber of new
ows arrive at the same time, the slow pathof the system that implements the complete headermatching can be temporarily overloaded. This will re-sult in queueing of packets before they are processed.But in this case, no intelligent mechanism can be ap-plied for bu�ering and scheduling of these packets be-cause without header processing there is no informa-tion available about the destination of the packets orabout any other �elds relevant to di�erentiation. So itis possible that congestion and packet dropping hap-pen due to processing overload and not due to outputlink congestion.To better illustrate this, consider the model in Fig-ure 1. Packets arrive to the interfaces and are placedin a queue for processing. After the packet classi�-cation and next-hop lookup operations are performed,they are forwarded to the outgoing interfaces wherethey are queued for transmission. Clearly, some inter-faces may be idle even though there are packets waitingto be transmitted in the input queues. For example,all packets destined for output 1 can be blocked inthe slow path processing module behind packets thatare destined to other outputs. Output 1 remains idle,although there are packets in the bu�ers available fortransmission. Obviously such a system will su�er fromHead-of-Line blocking that will limit the throughputsubstantially. Note, that the Head-of-Line problemcan be diminished, if there is knowledge about theyNote the by active we do not imply that the
ow currently hasa backlog of packets to be served. The de�nition of active
owsfor caching look-up information is di�erent from the de�nition forscheduling because caching information changes at a slower time scale.

destination of more than one enqueued packet [20].However, the fundamental problem of the system ofFigure 1 is that the destination or the context of thepacket is not actually known before the packet is pro-cessed. Thus, it is impossible to apply any intelligentqueueing mechanisms at the input queues and head-of-line blocking cannot be eliminated.3. A commercial Internet infrastructure should be ro-bust and should provide predictable performance atall times. Variations in the throughput of forwardingengines based on tra�c patterns are undesirable andmake network tra�c engineering more di�cult. In ad-dition, the network should not be vulnerable to at-tacks from malicious users. A malicious user or groupof users discovering the limitations of the hash algo-rithms or caching techniques, can generate tra�c pat-terns that force the router to slow down and drop alarge portion of the packets arriving at a particularinterface.Summarizing, we claim that any packet queueing delaysare only acceptable after the classi�cation step is performed,if provisioning of di�erentiated services and robustness areimportant. In particular, the queueing delays before thecomplete processing of a packet can be no larger than themaximum allowed delay for the
ow with the minimum de-lay requirement (which could be extremely small if constantbit rate
ows are supported). This no-queueing before pro-cessing principle applies because it is the header process-ing (including packet �ltering) operation that enables therouter to determine the quality-of-service (QoS) level to beaccorded to a particular packet. Hence, large queues formedwhile waiting for the �ltering operation can violate quality-of-service for some
ows even before the router determinesthe QoS to be accorded to the
ow. The implication thatthis has on the design of packet �ltering algorithms is thatit is the worst-case performance of the algorithms that de-termines the true maximum packet processing rate and notthe average case performance (the averaging being done on�lter rule combinations and tra�c arrival patterns). If aver-age case performance is used to determine supported packetprocessing speeds, then bu�ering is needed before �ltering.To estimate delays in this undi�erentiated-tra�c bu�er, weneed a characterization of the the variance in executiontimes (which is di�cult to determine) and we need to pre-dict tra�c patterns at di�erent interfaces. The delay in thispre-�ltering bu�er can cause QoS to be violated for
owswith stringent delay constraints if there is any error in es-timating these quantities. Hence, it is preferable to avoidqueueing before header processing.2.2 Criteria for e�cient packet classi�cation and systemconstraintsWe can now outline, based on the prior discussion, the cri-teria that an e�cient classi�cation algorithm must meet:1. The algorithm must be fast enough for use in routerswith Gigabit links. Internet Service Providers are en-visaged to build networks with link capacities of 2.4Gigabits/s and more. Any packet classi�cation schemefor use in core networks must be scalable to thesespeeds.2. The algorithm must be able to process every packetarriving to the physical interfaces at wire-speed. Re-cent tra�c studies have shown that 75% of the packets

Fast Path

Slow Path

Fast Path

Switch Fabric

Output Buffers

Output Buffers

1

N

.

.

.

.

.

.

1

N

NN1

Slow Path

NN1

Figure 1: Queueing model of a system that uses a cache-based architecture for packet classi�cation.are smaller than the typical TCP packet size of 552bytes. In addition, nearly half the packets are 40 to 44bytes in length, comprising of TCP acknowledgmentsand TCP control segments [24]. Since the algorithmcannot use bu�ering to absorb variation in executiontimes, it must operate at wire-speed when all packetsare as small as 44 bytes. This means that the algo-rithm must have provably small worst-case executiontimes which are independent of tra�c patterns.3. Classi�cation rules must be based on several �elds ofthe packet header, including among others source anddestination IP addresses, source and destination portnumbers, protocol type and Type-of-Service. The rulesmust be able to specify ranges and not just exact valuesor simple pre�xes.4. For some applications, it might be possible to limitthe requirements to only two dimensions and to haveranges de�ned only as pre�xes. This is a more re-stricted problem than the general classi�cation prob-lem but it has a very useful application in both multi-cast lookups and in RSVP reservations that use eitherwild-card �lters or CIDR aggregations [15, 28].5. It is possible that some packets may match more thanone rule. The algorithm must allow arbitrary prioritiesto be imposed on these rules, so that only one of theserules will �nally be applicable to the packet.6. Updates of rules are rare compared to searches in thedata structures. In particular, the frequency of up-dates is in the time-scale of tens of seconds or longerwhereas look-ups happen for every processed packet.At a packet processing rate of 106 packets per second,the ratio of look-ups to updates is 107. Hence, the al-gorithms can be optimized for lookups even if it meansdegrading update performance to some extent.7. Memory accesses are expensive and are the dominantfactor in determining the worst-case execution time.8. Memory is organized in words of size w and the costof accessing a word is the same as the cost of accessingany subset of bits in a word.

9. Memory cost can be relatively low if high-integrationtechnologies such as Synchronous Dynamic RAMs (SDRAMs)are used. These devices can provide very large capac-ity combined with a high access speed, provided thataccesses are sequential. A packet classi�er implemen-tation that requires multiple sequential accesses in ahigh-speed SDRAMmemory might be more a�ordablethan an algorithm of lower time-complexity that useshigher-cost, lower capacity memories like SRAMs.10. For operation at very high speed the algorithm must beamenable to hardware implementation. While we donot preclude software implementations of our proposedalgorithms, we are primarily interested in algorithmsthat are implementable in hardware as well and arenot restricted to only a software implementation.3 Previous WorkThe idea for packet �ltering, or classi�cation in general, wasinitiated in [16] and was later expanded in [19, 27]. Thearchitectures and algorithms presented in these papers weretargeted mainly for an end-point and their main goal wasto isolate packets that are destined to speci�c protocols orto speci�c connections. The algorithms used, although theyinvolved a linear parsing of all the �lters, were fast enoughto operate at end-point link capacities. Obviously these im-plementations do not scale to very high speeds.An interesting variation was presented in [1] where the�rst hardware implementation of packet �lters was reported.The implementation, although fast enough to support anOC-12 link, is restricted to only a small number of rules(< 12) and is not general enough for a commercial high-speed router. The implementation uses a pipelined architec-ture, resulting in O(1) performance using O(N) processingelements for O(N) rules. Clearly, such an algorithm cannotscale to a large number of �lter rules since it requires a linearnumber of processing elements. Moreover, this scheme wasdesigned for rules that required exact matching and not forrules de�ned as ranges.The general packet classi�cation problem that we con-sider can be viewed as a point location problem in multidi-mensional space. This is a classic problem in ComputationalGeometry and numerous results have been reported in the

literature [5, 6, 11]. The point-location problem is de�nedas follows: Given a point in a d-dimensional space, and aset of n d-dimensional objects, �nd the object that the pointbelongs to. Most algorithms reported in the literature dealwith the case of non-overlapping objects or speci�c arrange-ments of hyperplanes or hypersurfaces of bounded degree[22]. When considering the general case of d > 3 dimen-sions, as is the problem of packet classi�cation, the best algo-rithms considering time or space have either an O(logd�1 n)complexity with O(n) space, or an O(log n) time-complexitywith O(nd) space. [22]. Though algorithms with these com-plexity bounds are useful in many applications, they aremostly not directly useful for packet �ltering. For packet�ltering, the algorithms must complete within a speci�edsmall amount of time for n, the number of �lters, in therange of a few thousands to tens of thousands. So eventhe algorithms with poly-logarithmic time bounds are notpractical for use in a high-speed router.To illustrate this, let us assume that we would like therouter to be able to process 1K rules of 5 dimensions within1�s (to sustain a 1 million packets per second throughput).An algorithm with log4 n execution time and O(n) spacerequires 10K memory accesses per packet. This is impracti-cal with any current technology. If we use an O(log n) timeO(n4) space algorithm, then the space requirement becomesprohibitively large since it is in the range of 1000 Gigabytes.To the best of our knowledge, there is no algorithm re-ported in the literature for the general d-dimensional prob-lem, of point-location with non-overlapping object, with lowerasymptotic space-time bounds. In addition, our require-ments are not for point location given non-overlapping ob-jects, but for point location with overlaps being permittedand prioritization used to pick one object out of many over-lapping solutions.For the special case of two dimensions and non-overlappingrectangles a number of solutions have been reported withlogarithmic complexity and near-linear space complexity [12].However, these algorithms do not consider the special prob-lem related to longest-pre�x matches where arbitrary over-laps may be present and overlaps are resolved through thelongest pre�x priority. An even better solution has beenreported in [2] where the time complexity is O(log logN).However, the algorithm is based on the strati�ed trees pro-posed by van Emde Boas [23, 3] for searches in a �nite spaceof discrete values. The data structures used require a per-fect hashing operation in every level of the tree. The prepro-cessing complexity, without using a randomized algorithm,of calculating the perfect hash is O(min(hV; n3)) where h isthe number of hash functions that must be calculated and Vis the size of the space. Note, that for 2-dimensional longest-pre�x lookups this can result, even for a small number ofrules, in executions requiring 232 cycles which is impracti-cal, even if preprocessing is only required once every severalseconds.4 General Packet Classi�cation AlgorithmsA simple approach to the problem of multi-dimensional search,as used for packet �ltering, is to use decomposable search.Here the idea is to state the original query as the intersectionof a few numbers of simpler queries. The challenge then, forinstance to obtain a poly-logarithmic solution, is to decom-pose the problem such that the intersection step does nottake time more than the required bound. To achieve thesepoly-logarithmic execution times, various sophisticated de-compositions and query search data structures have been

proposed. However, as was pointed out before, even a log4 nsolution for 5 dimensional packet �ltering is not practical forour application where n can be in the thousands. Therefore,we need to employ parallelism of some sort. Moreover, werequire simple elemental operations to make the algorithmamenable to hardware implementation. Our cost metric ofmemory accesses being of unit cost till a word length is ex-ceeded implies that bit level parallelism in the algorithmwould give speed-ups. Instead of looking for data structureswhich give the best asymptotic bounds, we are interestedin decomposing the queries such that sub-query intersectioncan be done fast (as per our memory-access cost metric)for n in the thousands and memory word-lengths that arefeasible with current technology.The �rst point to note is that our packet-�ltering prob-lem involves orthogonal rectangular ranges. This means thata natural decomposition of a k-dimensional query in a k-dimensional orthogonal rectangular range is to decomposeit into a set of 1-dimensional queries on 1-dimensional inter-vals. The problem is that when we do this for our problem,each simple query can generate a solution of O(n) size. Thisis because we can have arbitrary overlaps and so O(n) rangesmay overlap a query point in 1 dimension. Consequently, theintersection step can take time O(n). Nevertheless, this so-lution is far more practical for our packet �ltering problemthan other poly-log solutions because we can take advantageof bit-level parallelism.To summarize, given our constraints (particularly theneed for hardware implementation) and cost metrics (in par-ticular memory access cost per bit incrementing only at wordboundaries), the number of �lter rules being of the order ofa few thousands, and the number of dimensions being 5, thesimple approach of decomposing the search in each dimen-sion (which can be done in parallel) followed by a linear timecombining step is more useful than a sophisticated O(log4 n)(n being the number of �lter rules) time algorithm.Below, we describe an algorithm which needs k�n2+O(n)bits of memory for each dimension, dlog(2n)e + 1 compar-isons per dimension (which can be done in parallel for eachdimension), and dn=we memory accesses for a pairwise com-bining operation. We then present a second algorithm whichcan reduce memory requirements to O(n log n) bits whileincreasing the execution time by only a constant (as longas log n <= w which would certainly be the case). Thissecond algorithm has two other bene�ts. The constant in-crease in execution time can be traded o� for increased mem-ory, allowing the algorithm to be optimized for the availabletime and memory budget. Also, it can exploit on-chip mem-ory in a tra�c independent manner to speed up worst-casebounds (unlike typical caching schemes which only speed upaverage-case bounds and are tra�c dependent). Speci�cally,if there is (k � n2)=l bits of on-chip memory then the num-ber of o�-chip memory accesses is dlog(n)=we=(2l)e. Thenumber of on-chip memory accesses is dn=won�chipe.4.1 Packet Classi�cation based on Bit-ParallelismAlthough, the algorithm we will describe has linear timecomplexity, its use of bit-level parallelism signi�cantly ac-celerates the �ltering operation for any practical implemen-tation. The �ltering rules are changed very infrequently incomparison to the frequency of search operations. Hence,extra preprocessing can be used to speed up searches.We assume that a set of n packet �ltering rules in k di-mensions are de�ned. We denote with rm = fe1;m; e2;m; : : : ; ek;mgthe set of ranges that de�ne rule rm in the k dimensions.

The preprocessing part of the algorithm is as follows:1. For each dimension j; 1 <= j <= k, project all in-tervals ej;i; 1 <= i <= n on the j-axis, by extractingthe jth element of every �lter rule for all n �lter rules.There are a maximum of 2n+1 non-overlapping inter-vals that are created on each axis. Let us denote byPj ; 1 <= j <= k the k sets of such intervals.2. For each interval i 2 Pj ; 8j 2 f1 : : : kg, create sets ofrules Ri;j ; 1 � i � 2n + 1; 1 � j � k, such that a rulerm belongs in set Ri;j if and only if, the correspondinginterval i overlaps in the jth dimension with ej;m, i.e.i� i � e(j;m) where e(j;m) is the jth element of rule rm.Without loss of generality, we assume that rules are sortedbased on their priorities. Assume that a packet with �eldsE1; E2; : : : Ek arrives in the system. The classi�cation of thepacket involves the following steps.1. For each dimension j, �nd the interval, say ij on set Pjthat Ej belongs to. This is done using binary search(requiring dlog(2n+ 1)e+1 comparisons) or using anyother e�cient search algorithm.2. Create the intersection of all sets Rij ;j ; ij 2 f1; 2; : : : 2n+1g. This can be done by taking the conjunction of thecorresponding bit vectors in the bit arrays associatedwith each dimension and then determining the highestpriority entry in the resultant bit vector.3. The rule corresponding to the highest priority entrymust be applied to the arriving packet.Note, that the on-line processing step involves an inter-section among the potential sets of applicable �lter ruleswhich are obtained considering only one dimension at atime. These potential solution sets may have cardinalityO(n) since we have assumed that rules may have arbitraryoverlaps. The intersection step involves examining each ofthese rules at least once and hence the algorithm has timecomplexity O(n).To accelerate the execution time, we can take advantageof bit-level parallelism. Each set Ri;j is represented by abitmap n-bits long which acts as the indicator function forthe set. Let Bj [i;m] be a (2n+1)�n array of bits associatedwith each dimension j. We can store each set Ri;j as a bitvector in column i of the bit array Bj [i; m]; 1 <= m <= n,where bit Bj [i;m] is set if and only if, the rule rm belongsin set Ri;j . The intersection operation is then reduced toa logical-AND among the bitmaps that are retrieved afterthe search in each direction. To be able to select the highestpriority rule, we rely on the rules being ordered based onpriorities. The bitmaps are organized in memory into wordsof width w where each word is the unit of memory access.We can implement the intersection by reading sequentiallythe words of all dimensions and implementing the logical-AND. The �rst rule that we �nd through this process is thehighest priority rule. Clearly this takes dk � n=we memoryaccesses. By making w large, the worst-case execution timecan be reduced farther.Let us consider the example in 2-dimensions, shown inFigure 2, to illustrate the functioning of the algorithm. Rulesare represented by 2-dimensional rectangles that can be arbi-trarily overlapped. The preprocessing step of the algorithmprojects the edges of the rectangles to the correspondingaxis. In the example shown, the four rectangles create seven

intervals in each axis. In the worst case, the projection re-sults in a maximum of 2n + 1 intervals on each dimension.We next associate a bitmap with each dimension, as is shownin Figure 2. A bit in the bitmap is set, if and only if, thecorresponding rectangle overlaps with the interval that thebitmap corresponds to. Note, that because of the methodby which the intervals were created, it is not possible fora rectangle to overlap, say, only with half an interval. As-sume that the packet represented by point P1 arrives to thesystem. During the �rst on-line step, we locate the inter-vals in both axis that contain this point. In the example,these are intervals X2 and Y2 for the X and Y axis respec-tively. In the second step, we use the bitmaps to locate thehighest priority rectangle that covers this point. Note thatrectangles are numbered based on their priorities. After thelogical-AND of the bitmaps, the �rst bit that is set in the re-sulting bitmap is that corresponding to rectangle 3 which isthe highest priority rectangle, amongst all those overlappingpoint P1.4.1.1 Hardware ImplementationThe key point behind the hardware implementation isthat the algorithm performs only very simple operations.Since the only hardware elements that are required for thebinary search operation (to locate enclosing intervals) is aninteger comparator, and the only operation for the inter-section is a parallel AND operation, it is apparent that thecomplexity of such a processing element is very low. Thestraightforward approach is to use a di�erent processing el-ement for each dimension (see Figure 3). Each processingelement consists of a single comparator, a state machine and2 local registers. The processing elements implement the bi-nary search on all intervals in parallel. The result of thissearch is a pointer to a bitmap for each direction. The sec-ond step of the algorithm requires a parallel access to allbitmaps and a logical AND operation amongst them. The�rst time that this operation results in a non-zero value,the corresponding �lter has been located. The algorithm re-quires one more access to the memory to retrieve the actionsthat may be associated with this �lter.The algorithm has been implemented in 5 dimensions ina high-speed router prototype using a single FPGA deviceand �ve 128 Kbyte Synchronous SRAMs chips supportingup to 512 rules and processing 1 million packets per secondin the worst case. This is achievable despite the device beingrun at a very low speed of 33 MHz. Since we used the samememory chips as those used in the L2-caches of personalcomputers, the cost of the memories is trivial. The devicecan be used as a co-processor, next to a general purposeprocessor that handles all the other parts of IP forwardingor �rewall functions.4.2 Packet Classi�cation based on Incremental ReadsThe next algorithm we propose uses incremental reads to re-duce the space requirements. The algorithm allows designersto optimize time-complexity and space. Since the dominantfactor determining execution times is o�-chip memory ac-cesses, the availability of on-chip memory and the use ofthe proposed algorithm can signi�cantly increase the num-ber of �lter rules that can be applied within the given timeconstraint.The main idea used in developing the proposed algorithmis the following. Consider a speci�c dimension j. There areat most 2n+ 1 non-overlapping intervals that are projected

1

2

3

4

Y1

Y2

Y3

Y4

Y5

Y6

X1 X2 X3 X4 X5 X6

1 1 1 1

1 0 1 1

1 0 0 1

1 0 0 0

0 1 1 0

0 1 00

1
0
0
0

1 42 3

1

2
3
4 1

1
0
0

1
1
0
1

1
0
1
1

1
0
1
0

1
0
0
0

P1 P2

Figure 2: General packet classi�cation using bit-parallelism.

Processing
Element

1

Processing
Element

2

Processing
Element

N.

 AND

Temp StoragePacket Input Packet Output

Intervals

Bitmaps

Intervals

Bitmaps

Intervals

BitmapsFigure 3: Architecture block diagram of a parallel implementation.

onto this dimension. Corresponding to each of these inter-vals there is a bitmap of n bits with the positions of the 1sin this bitmap indicating the �lter rules that overlap thisinterval. The boundary between intervals is a point wheresome the projections of some �lter rules terminate and thoseof some �lter rules start. If we have exactly 2n+1 intervals,then the set of �lter rules that overlap any two adjacentintervals l and m di�er by only one rule (i.e., at the bound-ary between interval l and m either a �lter rule's projectionstarts, or a �lter rule's projection ends). This implies thatthe corresponding bitmaps associated with these two inter-vals di�er in only bit. Hence the second bit map can bereconstructed from the �rst by just storing, in place of thesecond bit map, a pointer of size log n which indicates theposition of the single bit which is di�erent between thesetwo bit maps. Carrying this argument further, a single bitmap and 2n pointers of size log n can be used to reconstructany bit map. This cuts the space requirement to O(n log n)from O(n2) but increases the number of memory accessesby d(2n log n)=w)e.The above argument is not changed when more than one�lter starts or terminates at a particular boundary pointbetween two adjacent intervals. This is because if a bound-ary point has more than one, say i, �lters terminating orstarting at that point then the number of intervals in thatdimension is reduced by i� 1. Hence, we still need only 2npointers (each �lter terminating or starting needs exactlyone pointer even if they all terminate or start at the sameboundary point).We can now generalize this basic idea by storing (2n +1)=l complete bitmaps instead of just one bitmap. Thesebitmaps are stored such that at most only d(2n + 1)=2lepointers need to be retrieved to construct the bitmap forany interval. The preprocessing phase is as follows:1. For each dimension j 2 f1 : : : kg do2. Determine the, at most 2n+ 1, non-overlapping inter-vals for dimension j by projecting all intervals ej;i; 1 <=i <= n on the j-axis, and by extracting the jth elementof every �lter rule for all n �lter rules.3. Generate set of overlapping rules for �rst interval andstore its bit map in storage associated with this inter-val.4. For all intervals i 2 f2 : : : 2n+ 1g doGenerate set of overlapping rules for interval i. If thisbit map has l or more bits di�erent from most recentbit map which was stored, then store this bit map instorage associated with interval i. Otherwise, incre-ment i. At most d2n + 1=le bit maps are stored sincethere are n bits, each bit can change at most twice,and the successive bit maps have at least l bits whichare di�erent.5. Fill in pointers indicating changed bits from previousinterval. There are at most l � 1 intervals betweenintervals for which bitmaps have been stored. Startingfrom each bit map, store pointers which indicate thebits which have changed from the preceding interval.\Preceding interval" is the interval with lower indexfor bit maps in lower half of the l�1 intervals betweenstored bit maps and it is the interval with the higherindex for bit maps at the mid-point or upper half ofthe l � 1 intervals.The per-packet processing performed to �nd the appli-cable �lter rule, if any, is as follows:

1. For each dimension j 2 f1 : : : kg do2. Find the interval, say i, on set Pj that Ej belongs to.This is done using binary search (requiring dlog(2n+ 1)e+1 comparisons) or using any other e�cient search al-gorithm.3. If this interval has its complete bit map, bi, stored thenretrieve this bit map. This require dn=we memory ac-cesses. Otherwise, �rst retrieve the bit map for theinterval closest to i with a stored bit map. This bitmap has at most d(l� 1)=2e bits di�erent from the re-trieved bit map. Fetch the, at most d(l�1)=2e pointerscorresponding to all intervals in between i and the in-terval whose bit map was received. This case requiresdn=we+d((l�1)=2)�(log n)=wememory accesses. Con-struct the bit map for i using the pointers in sequence.4. Create a new bit map as the logical-AND of the re-trieved bit maps for all k dimensions.5. The index of the leading 1 in this bit map gives theapplicable �lter rule.4.3 Choice of lOne possible criteria for choice of l is to lower the memoryrequirement from O(n2). Setting l = 2n + 1 is an extremecase which reduces memory requirements to O(n log n) butrequires retrieving n�1 pointers. Let us present the tradeo�with an example. If we assume that bits of the bitmap areretrieved through pointers, as is the case when l = 2n + 1,then the total time for retrieving the bitmaps in each direc-tion becomes d2n log n=we which can be much higher thanthe dn=we time required by the �rst algorithm. However, atthe expense of higher execution time, the space requirementis reduced substantially.If on-chip memory is available however, complete bitmapsmay be retrieved together with the pointers. The basic as-sumption behind the utilization of on-chip RAMs is thatthey be designed to be extremely wide. It is thus possibleto increase the data bus width by at least a factor of 4 overan o�-chip RAM. Current technologies, such as the ones of-fered by major ASIC vendors [25, 21], allow large portionsof Synchronous Dynamic RAMs (SDRAMs) to be allocatedin the same chip as logic. Note, that SDRAMs are idealfor retrieving bitmaps since they o�er the best performancewhen accesses are sequential.So, let us assume that on-chip memory can be � times aswide as o�-chip memory. Let us assume that a full bitmapis kept in the on-chip memory for every l words. The totaltime required for retrieving this bitmap can be calculatedas t = n=�w. This time must be equal to the time requiredto retrieve at least l=2 pointers from the o�-chip memory,or t = l log n=2w o�-chip memory accesses. From the abovetwo relations, we can easily calculate the optimal value of lfor a given technology asl = 2� nlog n :For example, if we assume � = 4 and n = 8K we get l = 315and we will need approximately 64 cycles to complete theoperation. This will translate, using a 66MHz clock, to aprocessing rate of 1 million packets per second. Note, thatthe total space requirement for the 8K �lters is 32 Kbytesof on-chip memory and 32 Kbytes of o�-chip memory foreach dimension. This is de�nitely within the capabilities ofcurrent technology.

5 Classi�cation in Two DimensionsThe 2-dimensional classi�cation problem is of increasing im-portance in the evolving Internet architecture of the future.Drastically changing user expectations will necessitate theo�ering of di�erent types of services and service guaran-tees by the network. Although RSVP, or similar reservationprotocols, can o�er end-to-end Quality-of-Service guaran-tees for speci�c
ows, it is not clear whether such a reser-vation based model can be scaled for operation over high-speed backbones where a very large number of
ows can beconcurrently active. An alternative approach that has beenproposed is route aggregated
ows along speci�c tra�c engi-neered paths. This directed routing is based not only on thedestination address of packets, but on the source address aswell [18]. RSVP or similar reservation protocols can be usedfor setting the aggregation and routing rules [18, 4]. How-ever, the key mechanism needed to support such a scheme ina high-speed core router is a 2-dimensional classi�cation orlookup scheme that determines the next hop, and the asso-ciated resource allocations, for each packet as a function ofboth the source and destination addresses. In addition, mul-ticast forwarding requires lookups based on both the sourceaddress and multicast groups [13, 26].The 2-dimensional look-up problem is de�ned as follows:A query point p is a pair (s; d). For the forwarding prob-lem, these values could correspond to source and destinationaddresses. For the multicast look-up application, the querypoint can correspond to the source address of a packet andto a group id that identi�es the multicast group that thepacket belongs to. A 2-dimensional look-up table consistsof pairs (si; di) where each si is a pre�x of possible sourceaddresses and each di is a contiguous range or point, of pos-sible group identi�ers or destination addresses. Each pairde�nes a rectangle in 2-dimensions. Note that rectanglescan have arbitrary overlaps. Given a query point p, thesearch or look-up problem is to �nd an enclosing rectangle(if any), say rj = (sj ; dj), such that p = (s; d) is contained inrj , and such that sj is the most speci�c (longest) matchingpre�x of s. The dj can be ranges including pre�x ranges.The matching dj , when multiple matches occur for a spe-ci�c sj due to overlaps in the d direction, is taken to be theone of highest priority. Note that the d dimension allowsany contiguous range and is not restricted to pre�x rangesonly. Therefore, if the d direction corresponds to destinationaddresses, then ranges in the destination addresses do nothave to be in powers of 2 (which would be the case with pre-�x ranges) This might be particularly useful if destinationaddresses are concatenated with layer-4 destination ports orsome other similar header �eld.We are interested in solutions for use in IP routers. Thismeans that the look-up tables may have as many as 216entries and perhaps more. Also, we are interested in onlyworst-case performance of the algorithms since we want toavoid queueing for header processing in order to provide QoSguarantees.Let n denote the number of entries in the multicast for-warding table. A simple solution that takes only O(log n)time and O(n2) space is to have an n�n array with each en-try representing the highest priority rectangle that enclosesthe point corresponding to the coordinates represented bythe entry. The look-up is done with two binary searches.However, this is clearly impractical in space when the num-ber of �ltering rules is n = 216. The O(n2) space is becausethe same rectangle can be represented in O(n) locations.We would like to maintain the same time complexity

while storing all the rectangles using only O(n) space. Wecannot directly use known solutions to the problem of rect-angular point location since we can have arbitrary overlap-ping rectangles. In the proposed algorithm, we make use ofthe fact that in the s dimension our rectangles have lengthswhich are in powers of 2. This is because these s ranges arealways pre�x ranges.The restriction of ranges in one dimension to be pre�xranges provides constraints that can be exploited. To illus-trate this consider Figure 4. All pre�x range intervals canonly have sizes which are powers of two and totally arbitraryoverlaps are not possible (two pre�xes of the same length donot overlap). Also, a range can only start from an even pointand terminate at an odd point. Based on these observations,we can split the set of ranges into several distinct cells dis-tinguished by the length of the pre�x (or, equivalently thesize of the range).Let the s �eld be of length ls bits and the d �eld be oflength ld bits. Let R1; R2; : : : ; Rls denote subsets of the setR of n rectangles such that subset Ri consists of all rectan-gles formed from pre�xes that are i bits long. Let ni denotethe number of pre�xes of length i that are present in thelookup table. Assume that these pre�xes are numbered inascending order of their values. Denote the ni pre�xes oflength i by P 1i ; P 2i ; : : : ; Pnii . With each pre�x P ji there is anassociated set of rectangles, Rji = f(P ji ; d1i); (P ji ; d2i); � � � � � � ; g,that have P ji as one of their sides. The dji s which are rangesin the d dimension can overlap. The set of rectangles Ri isthe union of sets R1i ; R2i ; : : : ; Rnii where each of the Rji is theset of rectangles associated with the jth pre�x of length i.Note that the sets Rji are disjoint and that all rectangles inRji that match p have higher priority than rectangles in Rjtthat match p if i > t. This is because rectangles in Rji areformed with longer pre�xes than those in Rjt since i > t.In the example of Figure 4, the set of rectangles withpre�x equal to 1 is R1 = ffe1g; fe6gg. There is a totalof n2 = 1 pre�xes of length 2. The set R2 of rectanglesformed with pre�xes of length 2 consists of the rectanglesfe2; e3; e4g. From Figure 4, we see that these rectangles canoverlap in the d dimension. There is one pre�x of length 3and one rectangle formed using it. So set R3 has one set ofrectangles and that set contains one rectangle e5.Let us assume that the size of the list of ranges dji isdenoted by kji . >From each list of ranges consisting of dji s,we derive a list of non-overlapping intervals Dji s. The sizeof this new set Dji is Kji <= 2kji + 1, i.e. by represent-ing the original kji overlapping intervals as non-overlappingintervals we increase the space by only a constant factorof 2. The purpose of replacing overlapping intervals bynon-overlapping intervals is to locate the d from the querypoint into one of these non-overlapping rectangles duringthe search procedure and then to �nd the associated enclos-ing rectangle. Hence, when many intervals overlap a giveninterval, the rectangle associated with the interval (duringthe overlap eliminating phase) is the one with the highestpriority that overlaps the interval. In Figure 4, the set ofintervals that are created after this overlap elimination ford12 is D12 = fa0; a1; : : : a7g. Let us also assume that from theset of rectangles R12, rectangle e3 has the highest priority.Then this will be the rectangle associated with interval a2,although there are other rectangles overlapping this range.The preprocessing phase of the algorithm is as follows:1. Store the set of pre�xes P ji using any e�cient trie rep-resentation.

0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111

e2

e3

e4

e1

e5

e6

a1

a2

a3

a4

a5

a6
a7

a0

P1

Figure 4: Operation of the 2-dimensional algorithm when one dimension includes only intervals created by pre�xes2. i := 13. For each pre�x, P ji , store the list of non-overlappingintervals Dji s in sorted sequence using either an arrayor a binary tree.4. Repeat for all pre�x lengths iEssentially, in the preprocessing step we perform two op-erations: First, we separate the rectangles based on the pre-�x length in the s dimension. Then, for each pre�x, weproject all its associated rectangles to the corresponding axisto obtain �rst the overlapping intervals dji in the d dimen-sion. From these we create the non-overlapping sets Dji .The non-overlapping intervals are created by a scan of theoverlapping intervals from lower to higher co-ordinates inthe d dimension. The procedure is:1. do for all i2. Sort the set of overlapping intervals dji into ascendingsequence of their starting points.3. If an interval starts or ends, generate Dji for previousinterval. Store the interval and pointer to actions forhighest priority rectangle that overlaps this interval. Ifnewly created interval, and its previously stored adja-cent interval point to the same rectangle, merge thesetwo intervals. Since a new interval Dji is created, atmost, when an overlapping interval begins or termi-nates, the size of this new set Dji is Kji <= 2kji + 1where kji is the size of the set of overlapping intervalsdji .At the end of the pre-processing step each rectangle isstored in exactly one location on the s-axis, i.e, it is storedin a structure associated with the the pre�x used to formthis rectangle. Its d range is in sorted sequence within thestructure, with the other entries in this structure being the

d intervals of other rectangles formed using the same pre�x.The set of rectangles associated with a pre�x is stored asa list of non-overlapping intervals and requires space onlyproportional to the size of the set. OnlyO(n) space is neededto store all the rectangles since each rectangle appears onlyin one set and therefore the size of the union of all sets isO(n).The look-up algorithm operates in the following phases.1. i := 1; solution := nil2. Let Pi = fP 1i ; P 2i ; : : : ; Pnii g be the set of all pre�xes oflength i. Find the pre�x P ji of length i which matchess determined by the query point. If match P ji is foundthen search in the structure associated with P ji to �ndthe non-overlapping interval Dmi that contains d givenby the query point. Solution = rectangle associatedwith (P ji ; Dmi). This is the best solution among allpre�xes searched so far.3. Repeat till all pre�x lengths have been searched.The total execution time of the algorithm as presented isO(ls log n). This is because the number of iterations of thealgorithm in the worst case is equal to the number of possiblepre�x lengths ls. If use a trie structure (note that the use ofother data structures is not precluded) to determine pre�xesof each length then total cost in time for determining pre�xesis O(ls). The list of Dji s can be of size O(n). Hence, O(log n)time is needed to search each list for a matching entry (wewill later show this factor can be eliminated for all but onelist by cascading the search through these multiple lists).Consider the example of Figure 1. Assume that a packetwith header P1 = (0110; 0101) arrives. We �rst �nd amatching pre�x (0) of length 1 and search for enclosing rect-angles formed with this pre�x. We search the d dimensionand we �nd that rectangle e1 is a �rst candidate solution.Note that rectangles e1; e6 are the only rectangles in the setof rectangles with pre�xes of length equal to 1. Next, we

search using pre�xes of length 2. The matching pre�x is(01). We now get rectangle e3 as a better candidate sincethe d �eld of the arriving packet overlaps with the rangea2, and this rectangle is formed with a longer pre�x and e3has higher priority than other rectangles formed with pre-�xes of equal or lower length. e3 becomes the best solutionfound until now. Finally, we locate a matching pre�x (011)of length 3. We search among rectangles formed with thispre�x and get e5 as the best solution.The time-complexity of O(ls log n) obtained with this al-gorithm can be too large for use in a high-speed router. As-sume that the the number of possible pre�x lengths ls = 32and that the number of table entries n = 218 = 256K. Thisrequires 576 memory accesses in the worst case (the mea-sure of execution time for our algorithms). Hence, the timeis prohibitively high. In the next section, we show how thelog n factor can be eliminated, and so reducing the numberof memory accesses in the above example to about 50 whichmakes it practical for high-speed implementation.5.1 Eliminating the O(log n) factor in execution timeWith a trie implementation, the space requirement of theabove look-up scheme is O(n). Furthermore, the order ofsearch of the sets from the lists R1; R2; � � � ; etc: is in increas-ing order of pre�x lengths, i.e., a set from R1 is searchedbefore searching a list from R2 and so on. The search pro-ceeds in levels with sets belonging to R1 being on the �rstlevel, those in R2 being on the second level and so on. Letthe number of non-overlapping intervals in all of R1 beN1, inall of R2 be N2 etc. The bottom most level Rls has Nls non-overlapping intervals. Note that the number of overlappingintervals at each level can be O(n). Suppose that we had aserendipitous arrangement of intervals where only the size ofR1 is O(n) and for all Ri; i > 1 the sizes are O(1). Clearly,in this case the worst case execution time is O(ls + log n).Of course, we cannot count on such a good arrangement ofintervals. However, we can make this happen by introducingsome \virtual" intervals using a technique used in compu-tational geometry to speed up searches in multiple orderedlists [7, 8]When we perform a search on the list at level say i, theinformation we get is that the given d lies in an intervalDji . When we next search the lists at level i+ 1, instead ofsearching through all the intervals, we can use the informa-tion learned in the previous search and search amongst onlythose intervals that fall in the range given by Dji . While thismay improve the average case performance, unfortunately,the worst case is not a�ected by this heuristic. This is be-cause at level i+1 there may be O(n=ls) intervals which fallwithin the range determined by Dji and this can happen atall levels. Hence, an O(log(n=ls)) = O(log n) search may beneeded at every level.Now suppose we introduce \virtual intervals" at levelsi < ls in the following manner. There are Nls intervalsat level ls. Let us also denote by yls1 ; yls2 : : :, the boundarypoints that demarcate the Nls intervals in the d dimensionat level ls. There are 2 �Nls such points at most. We repli-cate every other point at level ls to level ls � 1, i.e 2 � Nlspoints are moved to level ls�1. The points that were propa-gated together with the points de�ning the original intervals,de�ne the intervals at level ls� 1. These are stored as non-overlapping intervals at level ls � 1. Next we take all theintervals now at level ls� 1 and their associated points andreplicate every other point and move them as virtual pointsto level ls� 2. We repeat this process till we reach the root

level. Note that the propagation is only used to speed upthe search. At each level, the rectangles associated witheach interval are as described in the preprocessing describedbefore. We can ignore the virtual intervals and points thatresult from propagation as far as the association of rectan-gles to intervals is concerned.Note that this propagation process only increases thespace requirements by a constant factor, i.e, the total spacerequirement is still O(n). It can be shown that the maxi-mum amount of virtual intervals created (and hence extraspace) is when Nls = n, in which case the number of bound-ary points at level ls is 2n. The extra space due to thepropagations is then2(n + n2 + n4 + : : :) <= 4n (1)However, by increasing the space by a constant factor, wegain the advantage that we can search the multiple listsin a more e�cient manner. We search the level 1 list asbefore taking O(log n) time in the worst case. This resultsin locating the given d in some interval Dj1. This intervalcan possibly be a virtual interval propagated up from thelevel 2. Now that we have localized d to the interval Dj1,the search in level 2 need only search in the range givenby Dj1. Because every other point has been propagated upfrom level 2, only 2 intervals can fall in range Dj1 to whichd has been localized. Hence, the search at level 2 can bedone in O(1) time. In general, in moving from level i tolevel i+1, the propagation of intervals ensures that there isenough information gained in the search at level i that thesearch at level i + 1 takes only O(1) time. Hence, the worstcase execution time of the look-up algorithm is O(ls+log n).To illustrate the algorithm, let us consider the exampleof Figure 5. For illustration purposes, we restrict ourselvesto only three squares. We start from the rectangles withthe longest pre�x and we propagate only point a1. As aresult, on the axis corresponding to pre�x of size two, thereare now three points. We propagate points b1 and b2 only.There are four points now in the axis for pre�xes of length1. Assume that a packet with header P1 arrives. During thesearch operation, we start from the pre�xes of length 1 andlocate rectangle e1 as a candidate solution. When we moveto pre�xes of size 2, however, we use a pointer to the set ofintervals that were possibly propagated. Note, that from thepropagation we have lost the information of whether P1 hasa d dimension smaller or larger than the point a1. But it canonly be one of the two solutions. There are two candidateintervals that are retrieved and only one corresponds to theincoming d value. Thus, we use the pointer associated withthis interval to continue our search on the pre�xes of lengththree. The �nal solution can be now retrieved.6 Concluding RemarksPacket �ltering or classi�cation, using multiple packet-header�elds and allowing range matches, has been considered adi�cult operation to implement at high-speeds and witha large number of �lter rules. However, it is a very use-ful primitive in connectionless networks for associating apolicy-de�ned context with each incoming packet, so as topermit packet handling using various policy-based routing,security, and di�erentiated services actions. We presentedthree new schemes for packet classi�cation. The �rst two arefor implementing generalized packet �lters allowing rangematches in many dimensions. The schemes allow processingof thousands of �lter rules at the rates of millions of packets

0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111

e1

e3

P1

Propageted
from level 3

Propagate from level 2

Propagate from level 2

e2
a1

b1

b2

Figure 5: Operation of the 2-dimensional algorithm when one dimension includes only intervals created by pre�xes and thepropagation technique is used.per second using simple hardware technology and moder-ate clock speeds. These processing rates are based on traf-�c and �lter-rule-pattern independent worst-case bounds,unlike cache-oriented schemes which are heavily tra�c de-pendent. We are interested in only worst-case performanceof the schemes since we want to avoid queueing for headerprocessing in order to use the packet classi�er for provid-ing di�erentiated services and QoS. The third scheme isfor the special case of two-dimensional lookups where theranges in one direction are restricted to being pre�x ranges.For this case, we present an algorithm which in the worstcase requires only O(number-of-pre�x-lengths + log n) Thisscheme allows 2-dimensional classi�cation to be performedwith hundreds of thousands of entries at speeds su�cientfor operation in network backbones. This two-dimensionallookup has many applications including the important one ofsupporting multicast. In the multicast case, since the groupidenti�er range is either a speci�c group identi�er or a wild-card range, our algorithm needs only 2 memory accessesbeyond what is needed for the longest pre�x match neededfor unicast forwarding. The ability to �lter on thousandsof rules in many dimensions, and hundreds of thousands ofrules in two dimensions, widens the range of options feasiblefor evolving the current best-e�ort Internet to the Internetof the future, capable of providing customized di�erentiatedservices. Speci�cally, our algorithms demonstrate that theremay be no need to restrict �ltering to the edges or to verysimple operations such as using only the Type-of-Service bitsin the IP packet header. Contrarily, the whole network, in-cluding the backbone, can participate in the enforcement ofpolicies.References[1] M.L. Bailey, B.Gopal, M.Pagels, L.L.Peterson, andP.Sarkar. PATHFINDER: A pattern-based packet clas-si�er. In Proceedings of the First Symposium on Oper-

ating Systems Design adn Implementation, November1994.[2] M. De Berg, M. van Kreveld, and J. Snoeyink. Two-and three-dimensional point location in rectangularsubdivisions. Journal of Algorithms, 18:256{277, 1995.[3] P. Van Emde Boas, R. Kaas, and E. Zijlstra. Design andimplementation of an e�cient priority queue. Mathe-matical Systems Theory, 10:99{127, 1977.[4] J. Boyle. RSVP Extensions for CIDR Aggregated DataFlows.In Internet Draft, http://www.internic.net/internet-drafts/draft-ietf-rsvp-cidr-ext-01.txt, 1997.[5] B. Chazelle. How to search in history. Information andControl, 64:77{99, 1985.[6] B. Chazelle and J. Friedman. Point location amonghyperplanes and unidirectional ray shooting. Compu-tational Geometry: Theory and Applications, 4:53{62,1994.[7] B. Chazelle and L.J. Guibas. Fractional cascading. i. adata structuring technique. Algorithmica, 1(2):133{62,1986.[8] B. Chazelle and L.J. Guibas. Fractional cascading. ii.applications. Algorithmica, 1(2):163{191, 1986.[9] K.C. Cla�y. Internet Tra�c Characterization. PhDthesis, University of California, San Diego, 1994.[10] D. Clark. Service Allocation Pro�les. In InternetDraft, http://www.internic.net/internet-drafts/draft-clark-di�-svc-alloc-00.txt, 1997.[11] K.L. Clarkson. New applications of random samplingin computational geometry. Discrete & ComputationalGeometry, 2:195{222, 1987.

[12] H. Edelsbrunner, L.J. Guibas, and J. Stol�. Optimalpoint location in a monotone subdivision. SIAM Jour-nal on Computing, 15:317{340, 1986.[13] D. Estrin, D. Farinacci, A. Helmy, D. Thaler, S. Deer-ing, M. Handley, V. Jacobson, C. Liu, P. Sharma, andL. Wei. Protocol independent multicast - sparse mode: Protocol speci�cation. In RFC 2117, June 1997.[14] D. Estrin, J. Postel, and Y. Rekhter. Routing arbiterarchitecture. In ConneXions, volume 8, pages 2{7, Au-gust 1994.[15] V. Fuller et. al. Classless Inter-Domain Routing. InRFC1519, ftp://ds.internic.net/rfc/rfc1519.txt, June1993.[16] J.C.Mogul, R.F.Rashid, and M.J.Accetta. The packet�lter: An e�cient mechanism for user level networkcode. Technical Report 87.2, Digital WRL, 1987.[17] K.Cla�y, C. Polyzos, and H.W.Braun. Application ofsampling methodologies to network tra�c characteri-zation. In Proceedings of ACM SIGCOMM'93, pages194{203, September 1993.[18] T. Li and Y. Rekhter. Provider Architecture for Dif-ferentiated Services and Tra�c Engineering (PASTE).In Internet Draft, http://www.internic.net/internet-drafts/draft-li-paste-00.txt, 1998.[19] S. McCanne and V. Jacobson. The BSD packet �lter:A new architecture for user-level packet capture. InUSENIX Technical Conference Proceedings, pages 259{269, Winter 1994.[20] N. McKeown, V Anantharam, and J. Walrand. Achiev-ing 100% throughput in an input-queued switch. InProceedings of INFOCOM'96, pages 296{302, March1996.[21] Mitsubishi,http://www.mitshubishichips.com/eram/eram.htm.eRAM - Memory and Logic on a chip, 1997.[22] M. H. Overmars and A.F. van der Stappen. Rangesearching and point location among fat objects. Journalof Algorithms, 21(3):629{656, 1996.[23] P. Van Emde Boas. Preserving order in a forest in lessthan logarithmic time. In Proceedings of 16th IEEEConference on Foundations of Computer Science, pages75{84, 1975.[24] K. Thomson, G.J. Miller, and R. Wilder. Wide-areatra�c patterns and characteristics. IEEE Network, De-cember 1997.[25] Toshiba America Electronic Components. CMOS dRA-MASIC Families, 1997.[26] D. Waitzman, C. Partridge, and S. Deering. Dis-tance Vector Multicast Routing Protocol. In RFC1075,ftp://ds.internic.net/rfc/rfc1075.txt, June 1993.[27] M. Yuhara, B.N. Bershad, C.Maeda, J.Eliot, andB. Moss. E�cient packet demultiplexing for multipleendpoints and large messages. In USENIX TechnicalConference Proceedings, Winter 1994.[28] L. Zhang, S. Deering, D. Estrin, S. Shenker, andD. Zappala. RSVP: A new resource reservation pro-tocol. IEEE Network, 7(5):8{18, September 1993.

