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ABSTRACT
FPGA technology has become widely used for real-time net-
work intrusion detection. In this paper, a novel packet clas-
sification architecture called BV-TCAM is presented, which
is implemented for an FPGA-based Network Intrusion De-
tection System (NIDS). The classifier can report multiple
matches at gigabit per second network link rates. The BV-
TCAM architecture combines the Ternary Content Address-
able Memory (TCAM) and the Bit Vector (BV) algorithm
to effectively compress the data representations and boost
throughput. A tree-bitmap implementation of the BV algo-
rithm is used for source and destination port lookup while
a TCAM performs the lookup of the other header fields,
which can be represented as a prefix or exact value. The
architecture eliminates the requirement for prefix expansion
of port ranges. With the aid of a small embedded TCAM,
packet classification can be implemented in a relatively small
part of the available logic of an FPGA. The design is pro-
totyped and evaluated in a Xilinx FPGA XCV2000E on the
FPX platform. Even with the most difficult set of rules and
packet inputs, the circuit is fast enough to sustain OC48
traffic throughput. Using larger and faster FPGAs, the sys-
tem can work at speeds greater than OC192.

Categories and Subject Descriptors
C.3 [Computer Systems Organization]: Special Pur-
pose and Application-based Systems

General Terms
Algorithms, Design, Security
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Reconfigurable Hardware, FPGA, Packet Classification, NIDS,
TCAM, BV, Tree Bitmap
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1. INTRODUCTION
Network intrusion detection systems that protect high-

speed computer networks demand both high throughput and
flexibility to handle new threats. Such systems classify Inter-
net packets based on both the header fields and the strings
in the packet content or traffic flow. FPGA technology is de-
sirable since it offers both high performance and the ability
to reconfigure.

Packet header classification is an integrated part of a full-
featured NIDS. Rules in an intrusion detection database usu-
ally contain 5-tuple header filters (i.e. Source IP Address,
Destination IP Address, Protocol, Source Port and Destina-
tion Port) plus some strings (also known as “signature”).

In a full-featured NIDS rule database, signatures can have
variable lengths and be located at any offset in the packet.
Packet header fields, however, are constant in length and ap-
pear at fixed location in the packet. Though in high level we
can see content string matching is another dimension of clas-
sification problem, existing packet classification algorithms
are not easy to be extended to handle the string matching.
Due to the different nature of strings and packet header
fields, it is desirable to separate the header classification
process from the string matching process. A cross-product
of the two results can be used to determine a complete rule
match.

A signature, however, might indicate a potential attack
only in a specific context defined by the header fields. Match-
ing the signatures independently of the header can greatly
reduce the system’s performance. In fact, if the performance
of the cross-product is poor, attackers may overload the sys-
tem by injecting worst-case traffic. The system can be vul-
nerable to a Denial of Service (DoS) attack or fails to catch
the sneak attacks. For this reason, some software based
NIDS match the header filters first then scan the content in
the context. But the performance of these systems is gen-
erally poor due to the lack of the parallelism and inefficient
data structure. Snort is a popular open source NIDS which
uses signatures to detect malicious activities over the Inter-
net [12, 1]. Unfortunately, this software based system cannot
keep up with high speed networks. The system drops pack-
ets when the input traffic load exceeds the processing power
of the CPU, on which the software runs. Within Snort,
the incoming packet header compares against the header
filters sequentially and then the packet payload compares
against the signatures in the context sequentially. On the
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other hand, in hardware, packet header classification and
content scanning can be performed in parallel, which im-
proves the overall system throughput. More efficient and
hardware-oriented data structures can be used to accelerate
the processing of each part.

For packet classification, some algorithms achieve high
performance at the cost of high system complexity, high re-
source usage, or high power consumption. Some algorithms
are very efficient in terms of resource usage but with poor
processing throughput. Some algorithms are only suitable
for the software implementations. Analysis of the charac-
teristics of the NIDS database reveals ways to best exploit
hardware parallelism and efficiently utilize the FPGA core
components.

Snort is a popular open source NIDS which uses signa-
tures to detect malicious activities over the Internet [12, 1].
Unfortunately, this software based system cannot keep up
with high speed networks. The system drops packets when
the input traffic load exceeds the processing power of the
CPU, on which the software runs. One of the well-known
signature-based rule sets is provided with Snort. Snort rules
are contributed by the network security community. Most
of the recently found network exploits can be extracted by
experts as new signatures and be added to the Snort rule
set promptly. The database of signatures has become very
large and keeps growing. However, among the thousands
of the Snort rules, there are only about 200 distinct header
rules1. This reveals that the number of distinct header rules
in NIDS is typically small comparing to the number of rules
in a core router database. This occurs since NIDS are usu-
ally deployed at the edge of an enterprise network and used
to protect the internal network form outside world. Though
the size of header rule set is moderate, it is still prohibitive
for a linear search. One more subtle point is that header
classification for a NIDS needs to provide all the matches
rather than just the highest priority one, because any header
match may lead to a complete rule match. So we cannot ap-
ply priority-based algorithms that terminate without giving
a thorough list of matching rules.

In this work, we detail the design of a packet classification
architecture named BV-TCAM for network security appli-
cations in FPGA hardware. BV-TCAM uses a small em-
bedded TCAM with programmable logic and block RAMs
in a Xilinx FPGA. We show that it should be possible to
port this design into a newer and larger FPGA for a full
functional NIDS and work at over OC192 throughput.

The rest of the paper is organized as follows. Section 2
states the problem we intend to solve and set it in context.
Section 3 reviews some related works that motivated our
design. Section 4 describes our design in detail and Section 5
prototypes the design and evaluate its performance. Lastly
Section 6 summarizes our contributions and concludes the
work.

2. PROBLEM STATEMENT
The formal statement of the general packet classification

problem is: There are k relevant packet header fields H1,
H2, ..., Hk, where each field is a bit string and allows one of

1The Snort rules are represented in an abstract and compact
way, so one such header rule may represent several rules in
an implementation. But the total number of distinct header
rules is still small and much less than the number of content
rules

three kinds of matches: exact match, prefix match or range
match. The header rule set contains a sequence of N rules
R1, R2, ... RN . Each rule is a combination of k header
fields. A rule is said to match a packet if each field in the
rule matches the corresponding field in the packet header in
the specified way.

In many of the packet classification applications, an action
occurs on the matched packet. For example, in a network
router, the matching guides the forwarding decision. In a
network firewall, packets are filtered or logged when a match
is detected. But in network intrusion detection, a header
match is not enough to identify a malicious packets. Further
inspection needs to be conducted.

An example rule from Snort database is shown below:

alert tcp $EXT NET any → $HOME NET 53
(msg:“DNS named version attempt”;
flow:to server,established;
content:“|07|version”; offset:12; nocase;)

If the content signatures appears at specified location in
any established TCP flow which is from outside network to
any host’s port 53 in local network, an alert message will
be sent to the administrator. We can separate this rule to
a header part and a content part. We represent this header
rule as a 5-tuple string {Source IP Address = any, Destina-
tion IP Address = internal network prefix, Protocol = TCP,
Source Port = any, Destination Port = 53}. It turns out
that many rules may share a common Snort header rule.
We classify the packet based on the header first, then use
this information to guide further inspections of the packet
content.

3. RELATED WORK
Using FPGA for network intrusion detection has become

a hot topic in recent FPGA research [7, 5, 13, 6, 4, 3]. One
compute-intensive task in NIDS is pattern matching. Most
of the related work focused on the efficient pattern matching
problem. However, packet header classification is another
integral part of a full-featured NIDS.

Many algorithmic and architectural approaches have been
proposed to classify packets. The software solutions are
weak in terms of performance while the hardware solutions
are overly complicated or costly to implement. It is still an
open and challenging problem to find practical solutions. A
good review of packet classification algorithms and archi-
tectures can be found in [16]. Here we focus on a particular
method well suited for an FPGA implementation.

Ternary Content Addressable Memory (TCAM) is cur-
rently the most popular method for packet classification in
practice. TCAM has the ability to store a “don’t care” state
in addition to a binary bit value. Input keys are compared
with every TCAM entry in parallel. Given N distinct rules
in a rule set, it only needs the O(N) storage and performs
in O(1) lookup time. But there are issues related to the
TCAM solution. TCAMs have low density and high power
consumption. TCAMs also do not support direct range rep-
resentation. In the header rules, the source port and desti-
nation port fields are usually defined as ranges. Although a
range can be converted into a series of prefixes, this process-
ing can greatly expand the rule set size. For example, in the
worst case, a sub-range of a k bit field can be converted into
2(k − 1) prefixes. The number of expansions is multiplied



to be up to 4(k − 1)2 when two port ranges are defined in
the header fields. This means in the worst case a single rule
may expand to 900 TCAM entries. Analysis on Washington
University’s CTS firewall rule set shows even a small set of
150 header rules explodes to 17000 different rules after the
ports are transformed from range to prefixes. So direct use
of a TCAM in this way is very inefficient.

There has been research on methods to match ranges
more efficiently with TCAMs. Spitznagel et al. proposed
a novel TCAM architecture called Extended TCAM (ET-
CAM) which supports direct range lookup [14]. A special
logic circuit that performs the range check is appended af-
ter the normal TCAM cells. By only doubling the overall
number of CMOS logic cells, it maintains the rule database
in its original size.

A scheme proposed by Liu introduced a range mapping
method for TCAM without expanding the rule set size [10].
Given the fact that the number of distinct port ranges is
limited even in a large database, a bit vector is created for
each range field. Each distinct range is assigned a bit po-
sition in the bit vector. So in a TCAM entry, besides the
normal {value, mask} pair for IP addresses and protocol
fields, two bit vectors present with the corresponding range
bit set to 1 and all other bits set to “don’t care”. A lookup
key translation table is also created for each port field. The
table index is the port value; each entry in this table is a bit
vector. The bit is set to 1 only if the port value is within
the corresponding range. To perform a header classification,
the packet ports values are used to lookup the key trans-
lation tables, then the outputs are attached to the other 3
fields to form the lookup key to TCAM. Though this scheme
doesn’t expand the number of TCAM entries, it does have
cost: the number of bits for each entry is expanded propor-
tionally to the number of distinct port ranges, which is not
scalable. Secondly, this scheme needs two large translation
tables with a size of 64K × (#ofdistinctranges). This is
so large that it will not fit in the embedded block RAMs
available in most FPGA devices and it could not even be
able to be implemented in off-chip SRAMs.

Yu et al. proposed another TCAM-based solution for in-
trusion detection [20]. They address the multi-match packet
classification by preprocessing the header rule set to effi-
ciently use the TCAM capacity: Firstly, they extend the
rule set and add a corresponding memory. The TCAM uses
the first match entry to retrieve all matches. Secondly, a
method is shown to remove the negations without signifi-
cantly expanding the rule set. Both steps only moderately
expand the size of the rule set in practice but it cannot
guarantee the worst case scalability.

The Parallel Packet Classification (P 2C) by Lunteren et
al. [11] is also a TCAM-based algorithm. Each field of the
header is encoded to less bits through preprocessing. For
each header rule, code words of all fields are concatenated
to form a TCAM entry. Though the total number of TCAM
entries still equals the number of header rules, each entry
needs much less bits than original header rule. This scheme
is impressive for a large scale rule set, however, to assemble
the TCAM lookup key, each header field must perform a
single field search first to retrieve a code. The proposed so-
lution also needs the port range expansion and performs tree
based lookups. This tends to lower the system throughput.

Another practical packet classification algorithm often re-
ferred as Lucent Bit Vector (BV) was initially proposed by

Lakshman et al. [8]. The BV scheme is targeted for hard-
ware implementation. It decomposes the multiple header
fields matching problem into several instances of single field
matching problem. The idea is to search for rules that match
each field of the packet header and represent the results as a
set of bit vectors. Each rule is represented as one bit in every
bit vector. If a header field matches the same field of a rule,
the corresponding vector bit is set to 1 otherwise it remains
0. After all bit vectors are acquired, the rules that match
the header can be obtained by intersecting the bit vectors.
This scheme is simple in that it only use memory access and
logic AND operation. If a binary search is used for each
field, this scheme has an O(logN) search time where N is
the number of rules in the rule set but it needs O(N2) mem-
ory, which is large in practice. The authors implemented
BV in an FPGA operating at 33 MHz and five 128 Kbyte
Synchronous SRAM chips. The configuration supports up
to 512 rules and processing 1 million packets per second in
the worst case.

In the original BV algorithm, in the case where the num-
ber of rules is large, the bit vector is wider than the memory
data bus causing a bit vector retrieval to require several se-
quential memory accesses. Baboescu et al. enhanced the
BV idea and proposed an improved algorithm called Aggre-
gated Bit Vector (ABV) [2]. They built a bit vector using
the longest prefix search tree. Each bit vector is partitioned
into k blocks. The natural block size is the largest number
of bits that one memory access can fetch. An aggregate bit
vector summarizes the bit vector which is stored along with
the normal bit vector. If there is any 1 in a block, the cor-
responding bit in aggregate bit vector is set to 1; otherwise
it remains 0. Upon lookups, the aggregate bit vectors for all
the checked fields are ANDed first to get the intersection.
Based on this smaller bit vector, only those blocks that con-
tain any potential match are checked further. Preprocessing
is needed to reorder the rules so that the 1s are denser in the
bit vector, therefore the aggregate bit vector is more useful
to reduce the number of memory access.

The BV and ABV algorithms are hardware-based. The
bit vector lookups for different header fields can execute in
parallel. For the 5-tuple header search, 5 groups of indepen-
dent accessible memories are used. However, the searching
time over each tuple is unbalanced: there are 32 bits in an
IP address but only 16 bits in a protocol port. The prefix
lookup for IP is 2 times slower in average than the lookup
for port and thus affects the overall performance negatively.
The design described in this paper handles this problem by
using a hybrid architecture.

4. BV-TCAM ARCHITECTURE
Our design combines and optimizes the TCAM and Bit

Vector algorithms for packet header classification in NIDS.
As mentioned earlier, network intrusion detection systems
require header classification to report all matches, not just
one. In usual applications, TCAM is associated with a pri-
ority encoder than only reports the ID of the matched en-
try with the highest priority. In this application, we prefer
an un-encoded TCAM. That is, the number of output bits
equals the number of TCAM entries and each bit indicates
the matching status of the corresponding TCAM entry. Just
like the BV output, the Un-encoded TCAM output forms
another bit vector and each bit in the vector indicates the
match to the corresponding rule field(s) or not. So the idea



Table 1: Example Header Rule Set
ID Source IP Destination IP Protocol Source Port Destination Port

1 any 192.168.0.0/16 tcp ≥ 1024 2589
2 any 192.158.0.0/16 tcp 10101 any
3 any 192.168.50.2 tcp any 443
4 192.168.0.0/16 any udp 49230 60000
5 any any tcp any 110
6 any any tcp 146 1000:1300

is that the header fields are partitioned in a way that some
of them are classified using TCAM while the others are clas-
sified using Bit Vector algorithms. Particularly, we exclude
source and destination port fields from TCAM while keeping
IP address and protocol fields in TCAM. We order the rules
in same sequence, hence we can intersect all the output bit
vectors to get the set of matches. This method optimizes
the size of the TCAM, as it does not expand the number of
TCAM entries.

TCAM could be programmed using the three fields of an
IP packet directly, but we do better by further savings of the
expensive TCAM entries. We observe that several different
header rules usually share the same address and protocol
fields, so we can compress these rules into a single TCAM
entry. A similar idea is used in [9] to optimize the hardware
implementation of an irregular TCAM architecture. Extra
logic is needed to decompress or map the TCAM output
bit vector to a full size bit vector. In order to realize this
idea, we sort the header rule set to group those rules together
that share the identical address and protocol fields, and then
label each rule with a global identifier in order. We only
program the distinct first three fields into the TCAM. Each
output bit of the TCAM is used to set or reset a group of
D type registers. In this way, a full size bit vector is formed
in which each bit corresponds to a header rule.

To better illustrate our design, a small set of example
header rules is shown in Table 1. Note that the rules are al-
ready sorted as described above. The corresponding circuit
that performs TCAM related partial classification is shown
in Figure 1. Though this scheme is the fastest, it does not
support incremental updates. Because of the fact that the
header rule database update is much more infrequent than
the actual lookup, the field-reprogrammable capability of
the FPGA is utilized. Whenever a new update is needed,
a new bit file can be generated then reconfigured into the
FPGA. Faster incremental updates can be supported by at-
taching a memory entry to each TCAM output which en-
codes the partial decompressed vector. Since typically a
packet may match a few TCAM entries, several memory ac-
cesses are needed to retrieve and decode the memory word
to build a full bit vector. In our design we use the first
method for simplicity and fast prototype.

We adopt the bit vector algorithms as described in ABV
algorithm for port classification. Specifically, we build the
port prefix lookup tree for bit vector searching. Since we
can build a very wide memory data bus using on-chip Block
RAM, we do not need to use the aggregated bit vector for
this scale of problem2. To build the binary port prefix

2There are only a few hundred distinct header rules in Snort
database. If the entire bit vector can be read in one memory
access, there is no need to aggregate the bit vector. This can
both improve the performance and eliminate the preprocess-
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Figure 1: TCAM for Compressed Header Rules

lookup tree, each port’s ranges are first transformed into a
series of prefixes. All prefixes are then inserted into a binary
decision tree. The branch decision at each level is decided
by the bit pattern in the prefix. Each valid prefix node has
a bit vector created. The bit vector indicates all the rules
with its port definition matching to this prefix. The lookup
procedure becomes a longest prefix matching problem for
the packet port. Upon receiving a port value from a packet
header for classification, The search is conducted by travers-
ing the tree using the bits of the address, starting with the
most significant bit. The search terminates when the bits
are exhausted or a leaf of the tree is reached. The bit vec-
tor stored at the matched longest prefix node is retrieved.
After we get all three bit vectors from the TCAM and the
two longest prefix lookup trees, the set of matches can be
determined by simply intersecting these bit vectors.

Here we still transform ranges to prefixes, however, we
use them to build decision trees rather than a brute force
TCAM programming. A decision tree uses cheap memo-
ries to store the data structure instead of expensive TCAM
entries. The size of the decision tree is not as sensitive to
the number of prefixes as the TCAM, because the size of
TCAM increases linearly with the number of prefixes. In
decision tree, additional prefixes may not change the size of
the data structure at all if the prefixes can be mapped on
existing tree nodes. Another important feature of decision
tree is that the worst-case search time does not depend on
the number of prefixes in set, but only depends on the depth
of the tree.

Optimizations are possible to search for the longest prefix
match. In order to speed up the lookup process, multi-bit
trie schemes were developed which perform a search using
multiple bits of the lookup bit string at a time. Controlled
Prefix Expansion and Leaf Pushing are two important tech-
niques for fast multi-bit trie lookup introduced by Srinivasan
and Varghese [15]. These and other similar techniques are
optimized for performance but have high memory consump-

ing effort. We will show this is the case in our design



tion. Unlike the IP lookup problem, where each valid trie
node only stores the next hop IP information, our scheme
stores a much wider bit vector. With limited resources, we
desire a scheme which consumes less memory and could fit
in an FPGA. The Tree Bitmap introduced by Eatherton
and Dittia [18] works well for this problem. This technique
avoids prefix expansion and leaf pushing while using a clever
indexing scheme to dramatically reduce the memory penalty
associated with a naive implementation. For each node in
a multi-bit trie, Tree Bitmap algorithm uses an Extend-
ing Paths Bitmap to represent the subset of the potential
children that are actually present, and an Internal Prefix
Bitmap to represent the prefixes associated with the given
node. Children of a node are stored in consecutive memory
locations. Similarly, the next hop information associated
with a node is stored in a group of consecutive memory lo-
cations. By counting the number of 1’s in the bitmaps, the
scheme allows the use of a single pointer to reference the
children and next hop information. In our application, a bit
vector is stored instead of the next hop information. The
bit vector is much wider hence more resource consuming
than the next hop information, but the total number of bit
vectors is small, so this not a serious concern for our design.

Table 2: Example Source Port Prefixes Expansion
Prefix Rule ID

* 3,5
0000 01** **** **** 1
0000 1*** **** **** 1
0001 **** **** **** 1
001* **** **** **** 1
01** **** **** **** 1
1*** **** **** **** 1
0010 0111 0111 0101 2
1100 0000 0100 1110 4
0000 0000 1001 0010 6

Using the example shown in Table 1, we transform the
source port range to a series of prefixes as shown in Table 2.
The corresponding multi-bit trie using Tree Bitmap is shown
in Figure 2. The trie stride is 4. Each black dot represents
a valid prefix and is virtually associated with a bit vector.
The four valid prefixes contained in the root trie node are
labeled in the Internal Prefix Bitmap and the four possible
child branches are labeled in the Extending Paths Bitmap.
Besides these two Bitmap vectors, 2 pointers are maintained
pointing to the first prefix’s bit vector and the first child
node’s address. All other trie node are structured in similar
way. There is a slight difference in the deepest level trie node
where there are no more extending paths present. Instead,
each so called “extending path” is already an exact match.
So the pointer for “extending path” here actually points
to a base address where the bit vectors are stored. While
splitting tree technique is proposed in [17] to deal with this
issue, we apply this alternative to keep the design simpler
and lower the resource consumption.

For example, if a packet with source port 2559 (09FF in
Hexadecimal) needs to be classified, The root node bitmaps
are checked which correspond to the first nibble of the port,
“0000”. So far the best match is “*” and meanwhile the
extending paths bitmap indicates a possible child. This best
match is latched and then the pointer is followed to the child
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Figure 2: Example Tree Bitmap for Source Port

node. In the child node, there is no further possible child
node for the second nibble “1001” and the best match prefix
is “0000 1*** **** ****”. The old best match is flushed
and the new best match is the longest prefix match. The
bit vector’s address is calculated by the base pointer and
the bit offset in the internal prefix bitmap. Finally, the bit
vector “101010” is retrieved, which means the header rule
1, 3 and 5 are all matched. Whenever it is impossible to
advance along the trie paths to find a new prefix match, the
stored best match pointer is used to retrieved the bit vector.

5. IMPLEMENTATION AND EVALUATION
A full FPGA-based NIDS is under development which will

implement a full-featured network intrusion detection sys-
tem. While our solution is general enough to perform any
kind of packet classification, we optimize our design to incor-
porate the Snort rule set. We show that only a small amount
of memory and logic is needed to implement a circuit that
achieves a fast header classification rate.

Specifically, we prototype the design in a Xilinx XCV-
2000E FPGA. The block diagram of the circuit is illustrated
in Figure 3. Our packet header rule set is extracted form
Snort database V1.9.03. There are a total of 222 unique
header rules. Since the NIDS is usually deployed on the
edge of the protected network and only monitors the pass-
through traffic, we can logically change the source IP ad-
dress from the external network to a wildcard “any” wher-
ever the peer IP address is in the internal network. After
this translation, the {Source IP, Destination IP, Protocol}
combinations are successfully compressed to have only 33
distinct values. That means in the most compact way, we
just need a 33 × 72bits TCAM. This size of TCAM can be
implemented using an embedded core on the FPGA without
consuming too many resources.

The brute force implementation of TCAM using logic gates
includes a set of registers and logic to perform parallel bit-
wise XOR and NAND operations. A 2-entry TCAM exam-
ple is shown in Figure 4. In our design, we use Xilinx Core
Generator to generate the TCAM component [19]. This
TCAM core is comprised of multiple blocks of SRL16Es
linked by carry-chains. The TCAM has a single-clock la-

3The Snort database is updated often and the latest version,
V2.2.0, has been released. But we find that the size of the
header rule set barely change, especially for the 3 fields that
affect the TCAM. We believe our implementation of the BV
algorithm can scale well to foreseeable Snort updates.
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Figure 3: BV-TCAM Circuit Block Diagram in XCV2000E
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Figure 4: TCAM Logic in Hardware

tency on its read operation which is desirable for our high
speed processing. We set the match address options to be
“multiple-match unencoded” so that the output is the bit
vector we need. The core uses 1188 SRL16Es which counts
only 3% of the available SRL16Es in XCV2000E. With a
larger FPGA like XC2V10000, the resource consumption
for TCAM is as little as only 1%. This also implies that
the TCAM scales to a reasonable larger size of header rule
database.

For the multi-bit trie, the worst case memory consumption
and lookup efficiency can be determined, given the stride of
S and the trie degree of k. The worst case memory consump-
tion happens when we have a complete trie with depth l. We
define N as the total number of trie nodes and b as the total
number of bits to store the node data structure, except the
memory for bit vectors. Since we store the trie data struc-
ture in limited on-chip Block RAM, it is critical to keep the
size of the trie data-structure as small as possible under the
throughput constraint. Each trie node maintains an “Inter-
nal Prefix Bitmap” with length (k − 1) and an “Extending
Paths Bitmap” with length k. There are also 2 pointers and
we assign 16 bits for each4. So the size of one node is

b = 31 + 2× k

4This means that we can support up to 64K prefixes and 64K
trie nodes. This number of prefixes is more than enough for
practical network intrusion detection systems. For example,
in Snort’s source port prefix trie, there are only 477 binary
trie nodes in total and less than 100 distinct prefixes.

Since the length of port field is 16 bits, we know

k = 2S and l = 16/S

thus

N =
kl − 1

k − 1
=

216 − 1

2S − 1

and

m = N × b

In Table 3 we summarize the memory usage for different
cases.

Table 3: Multi-bit Trie Data Structure
S k l N m

1 2 16 65,535 2,293,725
2 4 8 21,845 851,955
4 16 4 4,369 275,247
8 256 2 257 139,551

The larger the stride is, the less the memories are needed
and at same time less memory accesses are needed to get the
final bit vector. On the FPGA XCV2000E, there are 655,360
bits of Block RAM available. The multi-bit tries with stride
4 and 8 both satisfy the constraints. But the bitmap’s length
increases exponentially as the stride becomes larger, this in
turn lowers the speed to calculate the addresses of bit vector
or next trie node. For a real database with a smaller stride,
the bitmaps is significantly sparser, so the real number of
trie nodes is actually far less than the worst case estimation.
In terms of the memory efficiency, a smaller stride is more
favorable. As a tradeoff, we choose stride size 4 in our design.
So in worst case, at most 4 steps walking in the trie are
needed to obtain the bit vector.

Parsing the Snort header rules, we get 87 distinct prefixes
for source port and 177 for destination port. We have 222
rules in total that means each bit vector is 222 bits long. So
the total memories required to store the bit vectors are only
58,608 bits (i.e. 9% of the total available bits in XCV2000E).
This is small enough to be hold in on-chip block RAM.

In Table 4, we give the total memory usage for the source
port prefix trie under different strides, including the bit vec-
tors.



Table 4: Source Port Prefix Trie Data Structure Size
Stride # of Nodes Memory Usage(bits)

1 477 35,055
2 256 29,298
4 143 28,323
8 85 65,469

Clearly, at stride 4, we achieve the optimal memory effi-
ciency as well as a relatively fast lookup speed. In the worst
case, at most 5 memory accesses are needed to retrieve a
bit vector (i.e. 4 accesses to traverse the trie and 1 access
to retrieve the bit vector). Destination port prefix trie hold
the similar results. We assumes that in the implementation,
each trie node uses a 64-bits word, each bit vector uses a
256-bits word and both can be read in one clock cycle by
using fast on-chip Block RAMs.

An FPGA-based Tree Bitmap algorithm has been imple-
mented at Washington University [17]. This circuit is called
the Fast Internet Protocol Lookup (FIPL) search engine.
Multiple FIPL engines can work together to improve the
system throughput. We directly borrow this implementa-
tion and modify it to fit the BV algorithm. The major
difference is that we use on-chip Block RAM exclusively to
store all data structures and bit vectors. The resulting cir-
cuit consumes less than 1% of the available logic resources.

In an OC48 network, the worst case traffic pattern for
packet classification occurs when the link is saturated with
packets having the smallest length of 40 bytes. The packet
arrival rate reaches 2.4G/(40× 8) = 7.5M/s. For an FPGA
that runs on a synchronous 100MHz clock; this gives 13 cy-
cles to classify one packet. FIPL was designed for larger
scale IP prefix lookup so the data structure was stored in
off-chip memory. In our design, the data structure is small
enough to be hold in on-chip Block RAM. This greatly im-
prove the memory access efficiency since only a single clock
cycle is needed to retrieve a memory word. A single FIPL
engine for each port can satisfy our worst case throughput
requirement. The whole circuit consumes less than 10% of
the available logic and less than 20% of the available block
RAMs.

With more advanced FPGA parts such as the V2Pro and
the Virtex-4, we can achieve several times higher clock fre-
quency and more use of additional memory and logic re-
sources. By deploying more lookup engines and pipelining
the design as described in [17], 10Gbps throughput can be
achieved.

6. CONCLUSIONS
The BV-TCAM architecture efficiently classifies header

rules for NIDS in an FPGA. The multi-match requirement
sets this work apart from other general packet classification
systems. Our major contributions have two aspects. First,
while using the TCAM as a component, we avoid the need
to expand the size of the rule set by only using TCAM to
classify the fields that is represented as prefix or exact value.
We further compress the number of entries needed in TCAM
due to the fact that the number of distinct combined values
of these fields is much less than the total number of rules.
Second, after the port ranges are transformed to prefixes,
we use a Tree Bitmap approach to implement the multi-bit
trie Bit Vector algorithm. To the best of our knowledge,

this is the first attempt to use it in Bit Vector algorithm
implementation for packet classification.

Through the parallel operation and data structure size
compression, the architecture is optimized for both through-
put and storage efficiency. It is fit for straightforward FPGA
implementation with fairly low system complexity. The cir-
cuit is sufficiently general to handle large scale packet classi-
fication problems. In this paper, we focused on the intrusion
detection application. With the aid of the fast header classi-
fication, other deep packet inspection functions, such as the
multi-pattern string matching, can benefit in terms of both
lower false positive rate and lower processing overhead.
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