
Literature Review: Packet Classi�cation and

Inspection Techniques on FPGAs

Timothy Whelan

July 21, 2010

Introduction

As information systems increase in size and complexity the task of data acqui-
sition and processing in and of such systems becomes ever more arduous and
computationally expensive. To cope with the sheer size of the tasks required
new and faster techniques and systems are required to be developed. Such
environments are here demonstrated in a discussion of processing of packets
collected from a network telescope. Network telescopes collect large numbers of
network packets which can then be analysed to extract information about var-
ious security events that occur around the Internet. Identi�cation of events of
interest to an analyst and subsequent detailed inspection of events often requires
searching through an over-whelming collection of packets for a relatively small
portion that is useful. Such tasks have led to the need for methods to quickly
discriminate between packets based on certain key criteria, such as source IP
address for example. Systems that are able to perform this function on-the-�y
have found a use in deep network packet inspection where packets crossing the
edge of a network are inspected at all network layers for certain key phrases or
strings. As will be shown, Field Programmable Gate Arrays (FPGA's) are well
suited to such tasks due to their architecture and the nature of their operation
which allow them to provide a good balance between the speed and ease of
recon�guring the devices for di�erent problem parameters. Lastly a brief look
is taken at other possible methods for fast data processing such as the use of
Graphics Processing Units (GPU's) and application speci�c integrated circuits
(ASIC's).

Description of network telescopes

A network telescope resides on a portion of IP space which should receive very
little legitimate internet tra�c [11]. Network telescopes passively collect data
from networks and the data collected can be used to observe events on the In-

1

Figure 1: Structure of an FPGA

ternet. As can be seen in [21], useful attributes of network tra�c one might
measure include source and destination IP addresses and destination port. Rea-
sonably, one might wish to extend this list to include source port addresses and
protocols used in the packet if they can be identi�ed.

Description of FPGA's

As described by the Altera Corporation in [1] FPGA's can ful�l any programmable
function that could be implemented on an application speci�c integrated circuit
(ASIC) but also provide the ability to recon�gure the FPGA to provide altered
functionality. Whilst many other pieces of hardware exist that can be pro-
grammed to perform a certain function, and these hardware con�gurations can
also be reprogrammed, FPGA's have become important in industry as the only
�eld programmable logic devices that can provide a very high logic capacity on a
single chip {fpds}. Simple programmable logic devices (PLD's) typically execute
product and sum instructions on two levels of programmability; an AND-plane
that AND's inputs together in an e�ective multiplication and an OR-plane that
may or may not be programmable and which OR's its inputs [4, 9]. PLD's
operate on two-state logic levels but FPGA's are designed to be able to operate
using multi-level logic. The consequence of this design is that the complexity
of the computational circuitry that can be programmed on an FPGA greatly
exceeds that which can be placed on a PLD.

2

Figure 2: An antifuse semiconducting device shown before being programmed
(fused) in A and after being programmed in B

Memory in FPGAs

The structure of an FPGA consists of con�gurable logic blocks with various
interconnects between the con�gurable logic blocks as shown in �gure 1 [9]. To
provide functionality to an FPGA one speci�c interconnects there by linking
the di�erent logic components. FPGA's retain their functionality in three ways;
the instructions programmed on an FPGA are stored in antifuse con�gurations,
EPROM/EEPROM or SRAM blocks [9]. What follows is a brief description of
three memory technologies used in FPGA's as illustrated in [9].

Antifuses

Antifuses are semi-conductor components that provide electronic insulation un-
til a su�ciently high voltage is placed across the device at which point the
insulating ability of the components of the device is destroyed � the antifuse
behaves as a typical fuse but is meant to be `fused' to allow current to �ow
through the device. Antifuses however cannot be `unfused' hence once the an-
tifuse block of an FPGA has been programmed it cannot be reprogrammed [9].
Figure 2 is a diagrammatic sketch of an antifuse.

Static Random Access Memory

To allow the FPGA to be reprogrammed they are provided with blocks of static
random access memory, or SRAM. SRAM bit construction is shown in �gure 3.
When a write instruction, logic 1, is placed on the gate of the control transistor
data can �ow into the inverter system which maintains any logic level placed in
it. When logic 0 is placed on the gate of the control transistor then no change
can occur to the logic placed in the inverter system while it is supplied with
power. Should power to the SRAM bit be lost however then the data written
to the SRAM bit will be lost. Therefore a weakness of FPGA's that are built
using SRAM blocks of memory is that each time the device is powered on it
must be reprogrammed.

3

Figure 3: A single bit of SRAM

Erasable Programmable Read Only Memory (EEPROM)

The weakness of using volatile SRAM in FPGA's can be mitigated by making
use of EPROM, a diagram of which can be seen in �gure 4. In short, a voltage
is placed across the gate structure of an EPROM bit thereby inducing a change
in the internal structure of the semi-conductor. This change in structure can
be reversed by shining UV light on the device which causes the device to revert
back to its original state. The advantage of using EPROM over SRAM as the
memory that stores the functionality of the FPGA is that the change in the
device's structure does not need to be maintained by supplying power to the
device which means that the device need not be programmed upon powering up
but rather only once when the program logic is �rst transferred to the device.

General FPGA structure

The general structure of FPGA's is that of many con�gurable logic blocks
(CLB's) that are interconnected by routing lines of di�erent types that per-
form slightly di�erent routing functions [22, 9]. Figure 4 shows the structure
of a Xilinx Spartan-II FPGA's CLB slice, a portion of the CLB. There are two
such slices on a CLB [22]. What follows is the structure of the Xilinx Spartan-II
family of FPGA's taken from the Spartan-II databook [22]. This description,
while for a speci�c class of FPGA, serves to demonstrate the general principles
on which FPGA's operate.

As can be seen in �gure 4, a CLB slice is composed of a look up table
(LUT), carry and control circuitry and a D-type �ip-�op which can store the
output from the carry and control circuitry. This con�guration is termed a
logic cell (LC) and a CLB may have one or more LC's that together make up
a slice of a CLB. Multiple slices then make up a CLB. To program the FPGA
with certain functionality the FPGA design software, normally supplied by the
FPGA vendor, maps the high level logic designed by the FPGA programmer
into multiple single-step functions and these functions are then mapped onto the
LUT. The LUT con�gurations are stored using one of the memory technologies
discussed above. LUT's function by specifying the required output for all inputs
to the LUT. The results from CLB's are then routed around the FPGA using the

4

Figure 4: Spartan-II CLB slice

available routing paths placed on the FPGA. Routing on the FPGA is provided
to perform various di�erent functions such as:

• routing between LC's in a CLB to minimise routing delays for functions
requiring more than one LUT to describe,

• direct routing paths between adjacent CLB's for fast binary arithmetic
between adjacent CLB's,

• routing channels through general routing matrices that form meeting points
for horizontal and vertical routing paths that also connect adjacent rout-
ing matrices � general routing matrices specify whether or not connections
exist between the lines entering the general routing matrix.

Example FPGA applications

FPGA's are suitable for a number of high speed processing applications, espe-
cially ones where components can operate in parallel. What follows is a partial
list of applications of FPGA's:

1. FPGA's have been successful platforms on which to implement arti�cial
neural networks [25],

2. [7]demonstrates a system developed to implement the Advanced Encryp-
tion Standard encryption algorithm at a rate of 150Mbs,

5

3. FPGA's have proved a viable replacement for dedicated digital signal pro-
cessing (DSP) chips and ASIC's [8],

4. Central to the motivation for this literature review is the work done in us-
ing FPGA's to perform packet classi�cation and deep packet inspection[6,
3, 12, 18, 24]. As can be seen in the sources mentioned, deep packet inspec-
tion also often involves string matching within the payloads of packets.

The focus of the rest of this paper will be on FPGA based methods for packet
processing such as packet classi�cation and deep packet inspection.

FPGA Methods for Packet

Processing

As mentioned before, the motivation for this literature review is to examine and
assess work carried out in the �eld on network packet processing particularly on
FPGA platforms. The literature reviewed decomposes packet processing into
two separate actions: packet classi�cation, typically based on packet headers,
and deep packet inspection, typically string matching within packet payloads to
identify data being transferred in the packet [17, 18].

Packet classi�cation

To understand the desire to research improved methods for processing of packet
headers one can examine the uses of packet headers and the decisions that can
be taken pertaining to the handling of a packet once its headers have been
inspected. Song and Lockwood mention the use of network packet headers in
NIDS in [17]. The rules used in the Snort IDS typically include a 5-tuple of
packet headers, source and destination IP addresses and port numbers and the
protocol being used [17]. The IDS also uses pattern matching, as described later
in this review, when matching rules but uses the header processing to provide
a context in which the pattern matching results can be better utilized [17].
Ravindran et al describe packet routing and forwarding as another application
that bene�ts from improved methods in header processing [14].

There are many techniques for packet classi�cation based upon multiple
header �elds of a packet and a description of these techniques can be found in
[13, 20]. A brief range of these methods are related below.

Linear Search

Suppose that each �lter in a set of �lters were sequentially compared with the
headers of an inspected packet until either a �lter is found that matches the
packet's header �elds or all �lters are unsuccessfully matched to the �lter; this

6

would constitute an exhaustive, linear search for �lters that match the packet
headers [13]. This approach to packet classi�cation is straight-forward and
reliable {Nottingham, taylor} but provides poor performance [20] and makes
poor use of memory [13, 20] with O(N) memory requirements and performance
decreasing proportionally to the size of the �lter set [20]. Taylor does demon-
strate a means of reducing the memory requirements of a �lter set when using
exhaustive search techniques but the computational behaviour of exhaustive
linear searches still make it prohibitively slow for applications requiring high
throughput though it can be used in conjunction with other algorithms in a
more complex system [13, 20]. Linear search techniques do lend themselves well
to systems that can provide parallel processing [13]. Taylor suggests that if a
linear search is at one end of a spectrum of searching techniques, with linear
memory and search computational complexities, then ternary content address-
able memory would be at the opposite end of the spectrum with O(1) compu-
tational complexity. Ternary content addressable memory is discussed further
below.

Ternary Content Addressable Memory (TCAM)

TCAM is a type of memory that can store a �don't care� state as well as a 1 or
0 bit value in the memory [17] hence it is a tri-state memory as described by the
word �ternary� in its name. The operation of CAM memory is practically the
converse of conventional memory; a desired piece of data contained in memory
is speci�ed and what is returned is the address or a list of multiple addresses
where the content resides in memory [23]. TCAM is also optimised to search for
content in memory at multiple locations in parallel [20, 23] and all these features
of TCAM memory make it an obvious tool in packet classi�cation based on
header processing as indicated in the related work mentioned in [17] which will
be discussed later to illustrate a hybrid algorithmic approach to the problem of
packet classi�cation. However, TCAM technology has signi�cant drawbacks as
described by Taylor [20]:

• TCAM memory has a greater cost per bit than other memory technologies

• TCAM memory su�ers from ine�cient use of storage space because it
cannot store arbitrary ranges of numbers but instead such ranges need to
be converted into `<x' and `>y' descriptions (where x and y are bit string
pre�xes) and extra resources are required to store the �don't care� value

• TCAMmemory makes use of more transistors than other memories leading
to greater power consumption

• TCAM memory does not scale very well when input to the TCAM is long.

The above two techniques perform exhaustive searches over the entire �lter set,
albeit with vastly di�ering memory and time requirements. The following tech-
niques perform restructuring or either the �lters and/or the incoming packet's
�elds to transform the packet classi�cation problem into another class of prob-
lem and leverage observations that can be made about �lter sets.

7

Figure 5: Example �lter set (taken from [19])

Figure 6: A) Dest-trie representing the source addresses in the �lter set. The
open circle represents an invalid destination address pre�x. [19]

Grid-of-tries

This approach is described more formally in [19] but a brief description is pro-
vided below. Suppose an example �lter set is as in �gure 5 (note that this initial
set represents only source and destination addresses).

Firstly, a tree structure is constructed based upon the destination addresses
of the �lters (�gure 6a). This enables any incoming packet to be tracked to a
node in this tree (the dest-trie). The leaf nodes of the dest-trie contain pointers
to similar trees that represent decision trees for source addresses relevant to the
destination address represented at the originating leaf nodes of the dest-trie as
shown in �gure 6b.

The grid-of-tries structure described above can be optimised in many ways
and Srinivasan et al go on to describe some of these optimisations. Notably, the
memory requirements of this structure can be reduced by not repeating �lters in
multiple source-tries and search costs can be reduced by placing pointers from
one source-trie node to nodes in other source-tries so that when a search down
one source-trie branch fails a pointer can be followed to another source-trie and
the search can continue without having to perform redundant searches along
higher branches before progressing beyond what was already processed at the

8

Figure
6: B) The general trie structure showing the pointers from dest-trie to relevant
source-trie �lters. Note that source address �lters are repeated when one
dest-trie �lter is a pre�x of another dest-trie �lter. [19]

point of failure [19].
Tries however only work well for 2-dimensional �lters [13, 20, 19]. The

structure of tries also means that they are suitable for IP address masks but are
not suitable for arbitrary port ranges without changing the ranges speci�cations
into pre�xes, a task which can signi�cantly increase the number of tries required
to adequately describe the desired �lters [13, 20, 19]. As will be discussed later,
the cost of using a trie structure to perform port �ltering can be made acceptable
provided other �lter optimisation techniques are employed and tries have indeed
been used in conjunction with other techniques such as cross-producting (to be
discussed in the next section) in [19] and TCAM's in [17].

Cross-producting

Srinivasan et al introduced another technique in [19] as well as the grid-of-tries
approach to packet classi�cation: cross-producting. Cross-producting operates
by performing `best matching pre�x' searches on each �eld in the �lter, possibly
in parallel [13] given that these searches can be done independently [20], and
then combing the results of these independent searches into one more search to
provide a �nal overall classi�cation. While searching each �eld independently
for a best matching pre�x is relatively simple an e�cient method is required to
combine the search results into a �nal usable result [19]. The scheme proposed by
Srinivasan et al proposes dividing �lters into columns which group the di�erent
�eld values by �eld type. Then a cross-product is formed of these sets to create
a list of all possible combinations of �eld values that can be made from the �eld
values in the original �lter set. An example to illustrate this process is in �gure
7.

9

Figure 7: The process of forming cross-products from [20].

Cross-producting requires a prioritisation of �elds to enable the �nal cross-
products to be more closely aligned with one �lter than another �lter as once
the cross-product of �lters has been performed each cross-product is labelled
with a �lter that best matches the cross-product. When a packet is received
and the closest �eld pre�x for each �eld has been located independently then
this combination of individual �eld �lter pre�xes is used as a hash to locate the
closest matching �lter from the cross-product table.

Cross-producting, while providing a high throughput, has exponential mem-
ory requirements, O(Nd) [13, 20]. Srinivasan et al therefore proposed a hybrid
approach to packet classi�cation using their grid-of-tries technique to classify
based on destination and then source matching and cross-producting to match
ports and �ags [13, 20, 19].

Bit Vector

The bit vector classi�cation technique views the packet classi�cation problem as
a geometric problem with each D-�eld �lter specifying a region in D-dimensional
space and the classi�cation equates to locating which named region a packet can
be said to be placed in [13, 20], an illustration of this view is given in �gure 8
below.

A brief, simpli�ed, algorithm is adapted from [13] and [20] and described
below. Note that there are N �lters and D types of �elds in each �lter.

1. Prioritise the �lter rules (if priority is irrelevant then priorities can be
arbitrary)

10

Figure 8: A geometric view of the packet classi�cation problem. Filtering on 2
�eld (Port number and address) results in a 2 dimensional �lter. The shaded
regions with letters represent �lters and �lters may overlap (darker regions).
[13]

2. For each axis

(a) Divide the axis into regions bounded by the points where boundaries
of regions in D-space that are orthogonal to the current axis may
intersect the current axis.

(b) For each region along the current axis

i. Assign an N-bit bit vector equal to zero

ii. If region x in D-space, described by rule x, lies on the current
region

A. Then set bit x of the current region's bit vector to 1

A graphical representation of a geometric view of the classi�cation problem can
be seen in �gure 8 and a graphical representation of the result of the algorithm
can be seen in �gure 9 above.

When an incoming packet is received its �elds are decomposed and each one
is processed independently of the others to locate which �lter pertains to the
packet with the given �eld value. Alternatively one can describe the process as
locating which region along each of the D axes the packet might belong to. The
D bit vectors (1 bit vector result from each �eld or dimension) are then AND'ed
together to give a �nal bit vector result with each 1 bit representing a rule that
pertains to the packet �elds as a group e.g. a packet with port number 8 and
address 5 will return bit vectors 001 0100 0110 and 001 1000 1001 as seen in
�gure 9. When these bit vectors are AND'ed the result will be 001 0000 0000
indicating that �lter c classi�es the packet. If the rules in each dimension are
ordered according to some priority scheme then the signi�cance of the 1 bits in
the �nal bit vector will match the priority of the rules in the rule set. Li et al
{lucentbitvect} describe a bit vector implementation that uses trie structures
instead of taking the multidimensional geometric view described above.

11

Figure 9: Regions in D-space showing �lters and bit vectors for regions along
each dimension (N = 11; D = 2) (Figure adapted from [13])

Tuple Space

Sirinivasan et al {tuplespace} introduced the tuple space classi�cation algo-
rithm and Taylor {taylor} provides a less formal description of the tuple space
algorithm. The tuple space technique makes the observation that while there
may be many �lters in a �lter set, the number of di�erent lengths of pre�xes
in the �elds of the �lter is typically signi�cantly less than the number of �lters
{taylor, tuplespace}. For example, while a 32-bit IP address could conceivable
provide 100's of di�erent IP ranges and speci�c IP addresses to be used in a
�lter, there can only be 32 di�erent lengths of IP address masks or pre�xes in
the �lter set. Using this observation, a description of a �lter in a tuple space
technique indicates the number of bits in the pre�x describing each �eld in the
�lter and the concatenation of all these indicating numbers is called a tuple
{taylor, tuplespace}. An example from {tuplespace} supposes that if there are
two 2-dimensional �lters, F1 = (01*, 111*) and F2 = (11*, 010*) then a tuple
which could describe the �lters is [2, 3].

Port numbers in a �lter set are frequently speci�ed using ranges which make
pre�x representations inconvenient {tuplespace} hence Sirinivasan et al intro-
duced an encoding scheme whereby port ranges are divided up into Nesting
Levels with non-overlapping ranges and each range within a level is given a lo-
cally unique Range ID {taylor}. Port ranges are then speci�ed within the tuple
using the nesting level that the range is located in. An example of the complete
tuple creating process is given in �gure 9 taken from {taylor}. The description
of the protocol �eld within the tuple was simply a `1' if the protocol was spec-
i�ed exactly or `0' if the protocol �eld �lter contained a ternary character `*'
{taylor}.

12

Figure 10: A table of tuples derived from a �lter set and a diagram of the
associated encoding of port ranges.[20]

A variation of the tuple space searching method, called the Pruned Tuple
Space Search described in {tuplespace, taylor} creates trees of the source and
destination pre�xes with nodes containing tuples that may match a packet that
maps to that node in the tree. By mapping the source and destination address
of a candidate packet to these trees two list were obtained of tuples and the
intersection of these lists provided the tuples that needed to be searched for
�lters that may match the candidate packet.

The BV-TCAM Architecture (A hybrid technique)

The authors in [17] decided their system would be required to report all rules
which were matched by a packet instead of just the rule with the greatest priority
that was matched by the packet. The authors also used a hybrid algorithm in
their approach to solving the packet classi�cation problem and their approach
made use of Ternary TCAM and a grid-of-tries. Bit vector outputs from these
two schemes were then combined thus they labelled their architecture the BV-
TCAM architecture [17].

TCAM technology may be fast but it is however expensive in terms of the
space required hence it is very bene�cial to limit the number of entries required
in TCAM memory to be able to perform e�ectively by careful structuring of the
entries [17]. Song and Lockwood achieve this by observing that many rules in
a rule set typically share common IP addresses and protocols but di�er when
specifying ports or port ranges. This led the authors to use TCAM technology to
check matches in IP address and protocol �elds. Port speci�cations were checked
using a bit vector algorithm as TCAM is not very well suited to checking the

13

arbitrary ranges that one �nds for port �elds in �lters as mention earlier in the
discussion focussing on TCAM technology.

The output of the IP addresses and protocol matching TCAM mechanism
was encoded in a separate bit vector which had a bit length equal to the number
of rules being checked. If a packet matched a certain rule then the corresponding
bit in the bit vector was set to 1 otherwise it remained set to 0. To match port
numbers the authors created a trie structure, The port numbers were mapped
down the trie with branch selection governed by the presence of a 1 or 0 at
the currently inspected bit of the port number binary value, this is the origin
of the bit vector description in the algorithm. Branches in the trie structure
extend until either they represent the exact port address to be matched or, in
the case of port ranges, the pre�x of the port number represented up to that
point is su�cient to describe the range of port numbers. Each leaf node of the
trie then contained a bit vector indicating which rules had been matched in an
identical method to that reported from the TCAM segment of the classi�cation
unit. The combination of these two segments, the TCAM and the BV method,
then produced a �nal result indicating which rules a given packet had matched.

The BV-TCAM architecture developed by Song and Lockwood achieved a
throughput capable of operating at a rate of 2.488 Gbps, or OC48 [17]. It is
therefore also a good demonstration of how separate technologies and algorithms
can be combined to form a hybridized system.

Deep Packet Inspection

As mentioned earlier, deep packet inspection forms a key part of packet pro-
cessing for the aim of defence [12]. This often requires scanning the payload of
packets, and the packet headers in some instances, to locate malicious data em-
bedded within the packet by attempting to locate speci�c search strings within
packets. [5, 6, 3, 12, 18] demonstrate di�erent algorithms for such tasks which
will be discussed below.

Cho et al [6], like a few of the other sources that discuss deep packet inspec-
tion [5, 18], make reference to Snort IDS rule sets. Brie�y, �Snort is an open
source network intrusion prevention and detection system� [10] that is able to
detect packets on network interfaces and perform various actions based upon
di�erent properties of the packets detected [16]. This is done by applying rules
contained in a rule �le that form a rule set to each packet that Snort detects
[16]. Relevant to deep packet inspection is the ability of Snort to locate strings
speci�ed in Snort rules within network packets [16].

Simple N parallel rule checks

A simple approach described in [5] is to have N comparators to match N strings
for N rules. Each rule can then be treated independently and matching for all
rules can occur in parallel. An illustration of the system is shown in �gure 11
[5] where one can see that some initial processing on the packet headers is done

14

Figure 11: The structure of the system described by Cho and Magione-Smith
[5]

�rst to check which rules for packet content matching need to be checked. The
authors of [5] go on to address the problem of determining which rule has been
matched once any match has been detected.

Figure 12 shows how the content matching portion of the design operates
by matching a four byte portion of the packet against a sample string with four
di�erent o�sets.. If one assumes that a packet will only match one rule then the
index of the rule matched is encoded in a binary number whose bits are used to
navigate a path down a binary tree to the matched rule.

If more than one pattern is matched in a packet however then it becomes
impossible to determine which patterns have been matched by looking at the
index encoder output. Cho and Magione-Smith [5] then propose dividing the
rules into multiple sets with none overlapping patterns, so that no more than
one rule in a set can be �red by a packet at time, and assigning to each set
an index decoder as described above. This however has obvious increasing
space requirements as the number of required index encoders increases with the
number of rule sets.

Sourdis and Pnevmatikatos demonstrate in [18] a system similar to that of
Cho and Magione-Smith described above but make use of a fan-out structure
to essentially copy the packet to many comparator networks that check for the
occurrence for patterns in the packet as explained earlier in [5]. Other noticeable
di�erences between the approaches of Cho and Magione-Smith compared to that

15

Figure 12: The structure of the content pattern matcher developed by Cho and
Magione-Smith [5]

of Sourdis and Pnevmatikatos are:

• the assumption by Sourdis and Pnevmatikatos that only one pattern will
be matched in their system at a time, provided that di�erent pattern
su�xes are used [18], enabling the use of a simple index encoder similar
to that proposed in [5],

• and careful design of the pipelined comparator so as to conveniently make
use of the one 4-input LUT and single �ip-�op to identify half bytes of
characters and then AND-ing the outputs of the LUT's to form a complete
pattern match output.

The technique of matching the pattern to be identi�ed at di�erent one byte
o�sets within packet used in [5] is also repeated in [18].

Deterministic Finite State Automata (DFA's) in FPGA's

An approach to pattern matching within a sample space is to use deterministic
�nite state automata and these have been successfully implemented on FPGA's
as the work of Moscola et al demonstrates in [12].

In their work, Moscola et al �rst demonstrate brie�y how a pattern composed
of characters from a �nite alphabet can be described using regular expressions,
an example is given below: �Vi(R|r)u(S|s)� would represent the patterns Virus,

16

ViRus, ViruS and ViRuS. Symbols such as `*' can be used to represent multiple
occurrences of characters or character sets within a pattern [12].

Moscola et al then state the bene�ts of DFA's over Non-deterministic Finite
Automata (NFA's), namely the less space required for a completed DFA than
for a completed NFA without consideration for the space required during con-
struction of either automaton [12]. Moscola et al parse the pattern for each rule
through an application called JLex which constructs a DFA that can identify
the regular expression for the desired pattern and the output from JLex is then
used to generate VHDL source code which is then used to program the FPGA in
the �nal implementation (VHDL is a hardware design language used to specify
the functionality of FPGA's).

The action of the system presented in [12] is described as follows:

1. various protocol wrappers remove the di�erent protocols that may sur-
round the payload of a packet,

2. the packet is then routed through multiple content scanning modules
which use the DFA's programmed onto the FPGA to search for the pat-
terns to be identi�ed,

3. once the packet payload has passed through all content scanning modules
the appropriate actions are taken with regard to the patterns identi�ed,

4. appropriate actions may include dropping the malicious packet, sending
an alert message to a speci�ed network address and outputting the packet
from the content scanning module after wrapping the packet in the pro-
tocol headers stripped from the packet prior to searching.

Figure 13 shows a block diagram of the content scanning module presented by
Moscola et al as it appears in [12].

Moscola et al state that their system presents data to the content scanning
module at 32 bits per clock cycle and note that their system passes data to their
regular expression DFA's - (REn DFA) in the diagram above � at a rate of 8
bits per clock cycle. Since this would produce a back log in the system Moscola
et al designed their system to present packets to one of four content scanning
modules selected in a round-robin method thereby achieving a 32 bit per clock
cycle processing rate to match the 32 bit per cycle incoming and outgoing rates
of the system.

An alternate approach describe by Baker and Prasanna in [2] which `uses
a modi�ed version of the KMP (Knuth, Morris, Pratt) algorithm' [2]. Brie�y,
the KMP algorithm is able to detect possible occurrences of a pattern within
a string and upon a mismatch does not start the next search from very next
o�set in the string but rather from the next possible start of the pattern in
the string [15]. Suppose the pattern is 123 and the string is 121231 the �rst
search for the patter will start at o�set 0 but when a mismatch occurs at the
third character then the algorithm starts the next possible match at the third
character rather than the next o�set (which would be at the second character)
because the next position in the string at which the patter may be matched

17

Figure 13: The DFA content scanning module presented in [12].

is the third character. The KMP algorithm has worst case behaviour O(k +
n) [2]. Baker and Prasanna state that even though other algorithms may have
better average case performances than the KMP algorithm no other algorithm
has a more e�cient worst case performance. Baker and Prassana then describe
this property of the KMP algorithm as important because an attacker may try
to �ood an intrusion detection system in an attempt to force through some
malicious packets past the IDS; obviously the best way for an attacker to do
this would be to construct packages of the worst case for the IDS. The result of
using the KMP algorithm is that this worst case then has O(k + n) behaviour
[2].

The contribution of Baker and Prasanna is their demonstration that by
adding a second comparator and an input bu�er (the minimum size of which
Baker and Prasanna derive) the KMP algorithm can be used and the resulting
system can always accept at least one input character per cycle of operation [2].
This is an obvious improvement over the traditional approach of using a single
comparator which results in the system being able to accept at most one input
character per cycle of operation [2], a condition that can be seen to lead to the
type of attack mentioned earlier where worst-case packets are injected into the
input stream in an attempt to �ood the IDS.

18

Conclusion

As can be seen from this review of literature surrounding packet processing using
FPGA's, the use of FPGA's for wire-speed packet processing is well known in
the area of packet classi�cation and packet �eld processing with research dating
back to 1998 being presented in this review. However, it can be anticipated
that the more di�cult task of packet payload inspection might still have much
to o�er computer scientists who wish to study this area of FPGA utilization.

References

[1] Altera, 2010. Altera Corporation webpage.

[2] Zachary K. Baker and Viktor K. Prasanna. Time and area e�cient pattern
matching on fpgas. In International Symposium on Field Programmable
Gate Arrays, pages 223 � 232, 2004.

[3] Peter Bellows, Jaroslav Flidr, Tom Lehman, Brian Schott, and Keith D.
Underwood. Grip: A recon�gurable architecture for host-based gigabit-
rate packet processing. In In: Proc. of the IEEE Symposium on Field-
Programmable Custom Computing Machines, pages 121�130. IEEE Com-
puter Society Press, 2002.

[4] Stephen Brown and Jonathan Rose. Architecture of fpgas and cplds: A
tutorial. IEEE Design and Test of Computers, 1996.

[5] Young H. Cho and William H Mangione-Smith. Deep network packet �l-
ter design for recon�gurable devices. In ACM Transactions on Embedded
Computing Systems, 2008.

[6] Young H. Cho, Shiva Navab, and William H Mangione-Smith. Specialised
hardware for deep network packet �ltering. In International Conference on
Field Programmable Logic and Applications. The University of California,
2002.

[7] Pawel Chodowiec and Kris Gaj. Very compact fpga implementation of the
aes algorithm. In 5th International Workshop on Cryptographic Hardware
and Embedded Systems, volume 2779, pages 319�333, 2003.

[8] Gregory Ray Goslin. A guide to using �eld programmable gate arrays
(fpgas) for application-speci�c digital signal processing performance, 1995.
Xilinx Incorporated.

[9] Scott Hauck. The roles of fpgas in reprogrammable systems. In Proceedings
of the IEEE, volume 86, pages 615�639, April 1998.

[10] Source�re Inc. webpage.

19

[11] David Moore, Colleen Shannon, Geo�ery M. Voelker, and Stefan Savage.
Network telescopes: Technical report. Technical report, San Diego Su-
percomputer Center, University of California and Computer Science and
Engineering Department, University of California, 2004.

[12] James Moscola, John Lockwood, Ronald P. Loui, and Michael Pachos. Im-
plementation of a content-scanning module for an internet �rewall. In Pro-
ceedings of IEEE Workshop on FPGAs for Custom Computing Machines,
2003.

[13] Alastair Nottingham and Barry Irwin. Gpu packet classi�cation using
opencl: A consideration of viable classi�cation methods. In Proceedings
of the 2009 Annual Research Conference of the South African Institute of
Computer Scientists and Information Technologists, pages 160 � 169, 2009.

[14] Kaushik Ravindran, Nadathur Satish, Yujia Jin, and Kurt Keutzer. An
fpga-based soft multiprocessor system for ipv4 packet forwarding. In In
Proc. 15th International Conference on Field Programmable Logic and Ap-
plications (FPL-05, page 487492, 2005.

[15] Mireille Regnier. Lecture Notes in Computer Science, chapter Knuth-
Morris-Pratt algorithm: An analysis, pages 431 � 444. Springer Berlin
/ Heidelberg, 1989.

[16] Martin Roesch and Chris Green. SNORT Users Manual 2.8.6. The Snort
Project.

[17] Haoyu Song and John Lockwood. E�cient packet classi�cation for net-
work intrusion detection using fpga. In International Symposium on Field-
Programmable Gate Arrays, 2005.

[18] Ioannis Sourdis and Dionisios Pnevmatikatos. Fast, Large-Scale String
Match for a 10Gbps FPGA-Based Network Intrusion Detection System.
Springer Berlin / Heidelberg, 2003.

[19] V. Srinivasan, G. Vargheset, S. Suri, and M. Waldvogelg. Fast and scalable
layer 4 switching. In ACM SIGCOMM Computer Communication Review,
1998.

[20] David E. Taylor. Survey and taxonomy of packet classi�cation techniques.
ACM Computing Surveys, 2005.

[21] Jean-Pierre van Riel and Barry Irwin. Identifying and investigating in-
trusive scanning patterns by visualizing network telescope tra�c in a 3-d
scatter plot. In Proceedings of 6th Annual Information Security Conference,
2006.

[22] Xilinx. The Programmable Logic Databook 2000.

20

[23] Xilinx. Xilinx Content-Addressable Memory v6.1 Product Speci�cation,
2008.

[24] Cho H. Young, Shiva Navab, and William H. Mangione-Smith. Special-
ized hardware for deep network packet �ltering. In Proceedings of 12th
International Conference on Field Programmable Logic and Applications,
2002.

[25] Jihan Zhu and Peter Sutton. Fpga implementations of neural networks - a
survey of a decade of progress. In Proceedings of the 13th Annual Conference
on Field Programmable Logic and Applications, pages 1062�1066, 2003.

21

