Hardware based packet filtering using field
programmable gate arrays

April 15, 2010

Author: Timothy Whelan

Supervisor: Mr Barry Irwin
Rhodes University Computer Science Department,

Background to the project

Currently in operation by the Security and Networks Research Group (SNRG)
is an internet telescope that monitors packet flow over the internet and captures
the packets of data that pass by the telescope. During the 5 years of operation
over 500 gigabytes of data have been captured in packet form and the Hilbert
Curve and Inetvis projects have been developed with the aim of visualising
various aspects of the captured data [2]. Due to the vast number of packets
that need to be processed when visualising the collected data, high performance
means of filtering the captured packets to withdraw packets of interest are de-
sired. Field programmable gate arrays (FPGAs) appear to be well suited to
this purpose. FPGAs possess reconfigurable logic blocks [3] and hence are well
suited to comparing properties of desired packets to fields within the captured
packets and can be reconfigured to select packets based on alternative criteria.

Previous research

Yamaguchi et al. described in [6] how searches based on pattern matching can
be made faster with the use of FPGAs with an almost proportional increase
in the speed of the search as the FPGA used increases in size. Tsoi et al. [5]
also describe how an FPGA can be implemented as a search engine for hash
keys of the RC4 algortihm. The system designed by Tsoi et al. also shows
how parallelism can be built into the FPGA system to increase the speed of
searches. Of particular interest is a paper written by Ioannis Sourdis and Dion-
isios Pnevmatikatos [4] detailing how an FPGA system was implemented with
the intention of matching strings used in pattern matching in network intrusion
detection systems (NIDS). Sourdis and Pnevmatikatos show that their system
exceeded a throughput of 11Gbps when comparing network packets passing
through the FPGA with 50 different search strings used in the rule set of Snort,
the open source software NIDS used in their research. This reseult is promising



for my application of using an FPGA to filter packets based on properties of
the packets as searching for strings in packets is deemed to be more computa-
tionally expensive than checking numerical fields in the packets [4]. Hence, for
filtering based upon fioleds such as port numbers or IP addresses, the use of an
FPGA can be expected to prove very efficient by current speed standards when
compared to other, software based, packet filtering systems.

Project goals and research aims

The goal of this project is that by the end of the project a working imple-
mentation of an FPGA packet filter will be produced that can filter packets
based upon simple properties such as source/destination IP addresses or ports
(including ranges of IP addresses or ports) or a protocol used by the packet
thus enabling one to extract all SIP traffic discovered between a.b.c.0/8 and
x.y.z.0/16 on ports above 1000 as an example. This will enable comparative
analysis to be performed on timings for the FPGA implementation and existing
systems such as the Inetvis and the Hilbert Curve projects. It is believed that,
based upon previous research discussed above, an FPGA implemented packet
filter may prove to be faster than current software based packet filtering sys-
tems. However, this project makes use of an FPGA constructed in 2002 or
soon thereafter and so speed timings of the final implementation may only give
estimates of what an FPGA system using a modern FPGA may be capable of.

System Requirements

Designs are to be based upon the Xilinx XCS10XL FPGA using the Xilinx In-
tegrated Software Environment (ISE) on a Windows XP platform. A minimum
of 128MB of RAM will be needed by the Xilinx ISE. The Xilinx ISE further
specifies the following minimum system requirements [1]:

e 500MHz CPU speed
e Colour VGA monitor with a minimum resolution of 640 x 480

e a parallel port must be available on the system to enable designs to be
uploaded to the FPGA



Initial Project Design

Packet

O~ mM S wd =S

.
5
2
2
&
£
=)
B
=
ez
a
<
-
=
5 2
L=
& 8
S
T g
2
a5
z 2 g g z
: : £ £ ;
g g g g g <
g g g 2 = L
2 2 E g H A
= o = o o
g
éi
=
i
A
g2
g
a
@
=
R E
3 :
3 G <
: = e =
g £ 2
k g 4
g g : £ H
< 8 g 8 5]
g z g H s
2 a 2 A &
AeEs—mme v om
T
3
3
&

R A V=T oD

Packet

Packets enter the FPGA through an input interface. Ideally this would be an
Ethernet interface but initial prototyping might be done on a USB interface so
that input rates can be reliably controlled. A copy of the packet is then placed



in a buffer while the source/destination IP /port address and the protocol of the
packet are placed on the inputs of comparators by a demultiplexing unit. The
matching criteria such as the IP address range of desired packets is placed on
the second input of the comparators. The header attributes are compared with
the desired attributes and the result (1 if match, 0 if not matched) is passed on
to another unit which combines the results to determine if the packet must be
accepted or discarded by passing an enable or disable control bit to the buffer
containing a copy of the packet. If the buffer receives an enable bit the packet
is forwarded to the output interface, typically similar to the input interface.
If a disable bit is sent to the buffer the packet is discarded and the process
is repeated for the next packet. Note: additional comparators can be used to
check header attributes against disjoint sets of desired attribute e.g. desired
destination port numbers are <100 AND >1000. Currently captured packets
are stored in the libpcap format.

Risks associated with FPGA platforms

FPGA’s make use of volatile RAM for storage of operating instructions which
require power to be supplied to the device to load instructions onto the FPGA
and to remain available until the FPGA’s task is complete. Should any loss
of power occur the FPGA will lose all data stored on the FPGA including the
instructions that specify the operation of the FPGA. This problem can be mit-
igated though by making use of the otpion to load instructions from a serial
PROM chip that can be attached to the FGPA and configured to automatically
download instructions to the FPGA upon power up.

Developments and progress in hardware technologies can be easily incorperated
into the system by recompiling the software specifying the system design for
any new FPGA systems that might be developed enabling the system to con-
stantly operate on the latest designs with minimal disruption to the system
platform. However, should the format of packets change after system imple-
mentation the system would need to be redesigned to accomodate the changes
in packet formatting. With the continual rapid development of network tech-
nologies, particularly the impending implementation of IPv6, this is a definite
risk to the design of any system that will filter packets in a fashion similar that
intended by this system.

Other usual risks associated with hardware are also present; should such a sys-
tem be implemented fully protection from moistrue, extreme temperatures and
power fluctuations will need to be provided.

Intended Timeline



Date Objective

2nd Mar Present Project Proposal
3rd - 20th Mar Develop FPGA capable of sorting data
input
21st Mar - 19May Focus on literature review

21st May - 17th July Extend initial design to include packet
formats and simplify I/0

18th - 19th July Prepare presentation of project work to
date
20th July - 10th Aug Write report up to and including
Introduction
11th - 26th Aug Perform speed comparison tests with

FPGA system and current software
implementations of packet filters

27th Aug - 12 Sept Work on short paper
13th - 28th Sept Final optimisations to FPGA design

and perform more timings

29th Sept - 19th Oct Continue project report
20th - 24th Oct Prepare final presentation
25th - 30th Oct Complete project report

1st Nov Hand in project report

References

[1] ISE 1.5i Release and Installation Guide, 2002.
[2] Security and networks research group current projects, 2010.

[3] COMER, D. Digital logic and state machine design, 3rd ed. Oxford University
Press, 1995. ISBN 0-91-510723-3.

[4] Sourpis, 1., AND PNEVMATIKATOS, D. Fast, Large-Scale
String  Match  for a  10Gbps FPGA-Based  Network  Intru-
sion  Detection  System. Springer Berlin / Heidelberg, 2003.

http://www.springerlink.com/content /etqdrlxaeqvtlOdb/.

[5] Tso1, K. H., Leg, K. H., axp Leong, P. HH W. A mas
sively parallel rc4 key search engine. In 10th Annual IEEE Sym-

[6]

posium on Field-Programmable Custom Computing Machines (2002).

http://www.computer.org/portal/web/csdl/doi/10.1109/FPGA.2002.1106657.

YAMAGUCHI, Y., MARUYAMA, T., AND KONAGAYA, A. High speed ho-
mology search with fpgas. In Pacific Symposium on Biocomputing (2002).
http://helix-web.stanford.edu/psb02/yamaguchi.pdf.



