
An FPGA Based Implementation Of A Packet

Filter

Timothy Whelan

November 10, 2010

Abstract

This paper describes the design of a TCP/IP packet �lter implemented
on a Spartan-3AN development board. The design uses bit mask matching
and binary number range matching techniques to determine the matching
of TCP/IP �eld values to those speci�ed in a user provided rule set. The
initial design can accommodate ten rules against which packets can be
matched but it is shown that the rule set can be expanded up to around
100 rules to match against packets. Currently the design is suitable for
operating on TCP/IP packets but the design of the �lter's module allow
for the support of other transport protocols to be easily facilitated. The
�lter design in this paper is expected to operate successfully at line speeds
of 100Mbps or less.

1



1 Introduction

Data transmitted over networks require much extra information describing how
the data is meant to be transmitted. This metadata can provide information
useful for determining the origin of the data and what kind of data is being
transferred. This in turn allows one to monitor network tra�c received and
examine the metadata for items of interest. However the task of identifying
relevant tra�c is a challenge as the process that identi�es interesting tra�c
must keep the time cost incurred when analysing tra�c to a minimum to prevent
tra�c becoming delayed for too long or being dropped completely.

To this end research has been conducted in the �eld of packet classi�cation to
attempt to maximise throughput of such devices or processes and of particular
interest in this paper is the use of hardware, notably �eld programmable gate
arrays (FPGAs), to �lter network tra�c. This paper explores the use of such
devices for packet classi�cation and a few of the related algorithms and then
describes a partial implementation of an IP packet �lter on a Spartan-3AN
FGPA development board along with simulations of the modules that form part
of the �lter.

2 Packet structure

The protocols developed to carry data over networks in various ways each use
di�erent pieces of data to facilitate their functions. For example the Internet
Protocol (IP) is responsible for transferring data over a network, among other
responsibilities, from one node to another [5]. To accomplish this the IP proto-
col uses IP addresses to address the source and destination network nodes that
the data must be transmitted between. Since di�erent protocols perform di�er-
ent functions multiple protocols are required with the data to be transmitted
encapsulated in one protocol and the resulting data is encapsulated in successive
protocols until enough information is present within the resulting encapsulated
data to transmit the data over the network (for the case of IP the encapsulated
form is called an IP packet) [5].

A typical example of this, which is the particular focus of the �lter described
in this paper, is the TCP/IP stack � the encapsulation of data within a TCP
datagram encapsulated within an IP packet. For the speci�c application of the
�lter in this paper IP packets travelled over Ethernet and were encapsulated
within Ethernet frames. Diagrams illustrating the structure of Ethernet frames,
IP packets and TCP datagrams are shown in �gures 1, 2 and 3 respectively.

2



Figure 1: The Ethernet frame structure taken from [1].

Figure 2: The IP Packet structure taken from [5].

3



Figure 3: The TCP datagram structure taken from [5].

3 Problem statement

The problem of packet classi�cation is a relatively simple one. N-�elds of a
packet are chosen as relevant and together they form an N-tuple and for each
packet that passes through the �lter the N-tuple of the packet is matched against
N-tuples with speci�c values that are stored in a list of such N-tuples (termed a
rule set). The core issue of packet classi�cation is the e�ciency at which packets
can be matched which we seek to maximise for the reasons mentioned in the
introduction. Once it has been determined that a packet does or does not match
a rule a course of action for that packet can be decided.

4 Packet classi�cation techniques

Various techniques have been developed to try and accelerate the classi�cation
process. Brie�y, the two techniques discussed here are the use of grid-of-tries,
based upon tree data structures, and the use of bit vectors, which takes a geo-
metric approach.

4.1 Grid-of-tries

This approach is described more formally in [4] but a basic description is pro-
vided below. Suppose an example rule set is as in table 1 (note that this initial
set represents only source and destination addresses).

4



Table 1: Example rule set (from Srinivasan et al )
Filter Destination Source

F1 0* 10*
F2 0* 01*
F3 0* 1*
F4 00* 1*
F5 00* 11*
F6 10* 1*
F7 * 00*

Firstly the destination addresses of the rules are used to construct a tree
structure as in �gure 4. This enables any incoming packet to be tracked to a
node in this tree (termed the dest-trie) except for the open circle which repre-
sents an invalid destination address pre�x. The leaf nodes of the dest-trie con-
tain pointers to similar trees that represent decision trees for source addresses
(termed source-tries).

The source-tries are dependant upon the destination address represented at
the leaf nodes of the dest-trie as shown in �gure 5. Here the reader can see
the pointers from nodes in the dest-trie to relevant source-trie trees. Note that
source address trees are repeated when one dest-trie �lter is a pre�x of another
dest-trie �lter.

Figure 4: Dest-trie representing the source addresses in the �lter set taken from
[4].

Figure 5: The general trie structure showing the relation between the dest-trie
and the source-trie [4].

5



This grid-of-tries structure can be optimised in many ways and Srinivasan
et al go on to describe some of these optimisations. Notably, the memory
requirements of this structure can be reduced by not repeating trees in multi-
ple source-tries and search costs can be reduced by placing pointers from one
source-trie node to nodes in other source-tries so that when a search down one
source-trie branch fails a pointer can be followed to another source-trie and the
search can continue without having to perform redundant searches along higher
branches before progressing beyond what was already processed at the point of
failure [4].

Tries however only work well for 2-dimensional rules [3, 4, 6]. The structure
of tries also means that they are suitable for IP address masks but are not
suitable for arbitrary port ranges without changing the ranges speci�cations into
pre�xes, a task which can signi�cantly increase the number of tries required to
adequately describe the desired rules [3, 4, 6].

4.2 Bit Vectors

The bit vector classi�cation technique views the packet classi�cation problem as
a geometric problem with each D-�eld rule specifying a region in D-dimensional
space and the classi�cation equates to locating which named region a packet
can be said to be placed in [3, 6], an illustration of this view is given in �gure 6.

Filtering on two �elds (port number and an address) results in a two di-
mensional �lter. The shaded regions with letters represent rules and rules may
overlap (darker regions). A brief, simpli�ed, algorithm is adapted from [3] and
[6] and described below. Note that there are N �lters and D types of �elds in
each �lter.

1. Prioritise the �lter rules (if priority is irrelevant then priorities can be
arbitrary)

2. For each axis

(a) Divide the axis into regions bounded by the points where boundaries
of regions in D-space that are orthogonal to the current axis may
intersect the current axis

(b) For each region along the current axis

i. Assign an N-bit bit vector equal to zero

ii. If region x in D-space, described by rule x, lies on the current
region then set bit x of the current region's bit vector to 1

A graphical representation of a geometric view of the classi�cation problem can
be seen in �gure 6 and a graphical representation of the result of the algorithm
can be seen in �gure 7.

6



Figure 6: The geometric description of �lter rules taken from [3].

Figure 7: Regions in D-space showing �lters and bit vectors for regions along
each dimension (N = 11; D = 2) adapted from [3].

When an incoming packet is received its �elds are decomposed and each one
is processed independently of the others to determine which rules are matched
by the packet. Alternatively one can describe the process as locating which
region along each of the D axes the packet might belong to.

The D bit vectors (a bit vector result from each �eld or dimension) are then
AND'ed together to give a �nal bit vector result with each 1 bit representing a
rule that is matched by the packet's �elds as a group e.g. a packet with port
number 8 and address 5 will return bit vectors 001 0100 0110 and 001 1000 1001
as seen in �gure 7. When these bit vectors are AND'ed the result will be 001
0000 0000 indicating that rule c classi�es the packet.

7



If the rules in each dimension are ordered according to some priority scheme
then the signi�cance of the 1 bits in the �nal bit vector will match the priority
of the rules in the rule set. Li et al [2] describe a bit vector implementation
that uses trie structures instead of taking the multidimensional geometric view
described above.

5 Design and Implementation

This chapter describes an implementation of a simple packet �lter that uses
bit masking and large primitive gate structures to perform the rule matching
operations. The packet �lter described in this work was to be implemented on
a Spartan-3AN development kit.

This development board was chosen because it had a variety of interfaces
including an Ethernet 10/100 PHY chip on the board and standard RJ45 Eth-
ernet connector, obviously vital components for a project the required receiving
data from an Ethernet connection. The board also came with 512MB of DDR2
SDRAM memory which could be incorporated into the design and the multiple
interfaces ensured that the board's application could remain versatile.

5.1 Design Overview

The overall design of the packet �lter is modularised to allow easy expansion
of the design to include more components for expansion of functionality. Mod-
ularisation of the design also allowed the developer to leverage the modular
structure of packets with each module of the design performing a speci�c task.
The modules in the design are as follows:

� An Ethernet module that reads in nibbles of data from an Ethernet con-
nection and outputs IP packets.

� An IPrx module that reads in bytes of IP packets and records the protocol
and IP address �elds.

� A TCPrx module that reads bytes of a TCP datagram and records the
port number �elds.

� A Trie module that matches protocol �elds and IP addresses to rules stored
in the design.

� A PortBitVec module that matches port numbers to rules stored in the
design.

� An Aggregator module that accepts the outputs from the IPrx and TCPrx
modules.

� A Count module that records the number of times that packets match
rules stored.

� A Report module that reads the counts of rules and reports them over a
serial RS-232 interface.

A diagram of the design is shown in �gure 8 depicting the relative logical
positions of the modules and the signals between them (single bit signals are
shown with thin lines and multi-bit buses are depicted with thick lines). The

8



�lter described in this paper has provisions to keep a count of ten rules. It
was decided that ten rules was an adequate number of rules to demonstrate the
functionality of the �lter design.

5.2 Module Descriptions

This sub-section provides a description of how each module in the design oper-
ates and how the modules interface with each other.

Figure 8: An overview of the �lter design showing the modules and the signals
between modules.

9



5.2.1 Ethernet Module

The Ethernet module is responsible for reading data o� the wire that arrives in
four bit nybbles, with the lower nybble arriving �rst, and parsing out the MAC
addresses and checking the �eld specifying the network protocol carried in the
Ethernet frame. If the network protocol is that of IP a �ag (packet_present)
is raised and the data nybbles are collected into bytes. Another clock signal
(new_packet_data) is raised when each valid byte is received.

A simulation of this process is shown in �gure 9.

Figure 9: A simulation of the Ethernet module's functionality.

10



5.2.2 IPrx Module

The IPrx module is enabled by the assertion of the packet_present signal from
the Ethernet module and receives the bytes of data passed on by the Ethernet
module. The IPrx module parses the bytes of data and records the value of the
protocol �eld and the IP addresses. These �eld values are then passed to the
Trie module which checks the values against bit masks built from the rule set
created by the user of the �lter. If the bit masks for each �eld all match for
a rule, rule n, then the associated bit in a bit vector is asserted otherwise it is
de-asserted. The checks for each �eld for each rule are all performed in parallel.

The result of the Trie module's analysis is placed on the trie_output bus
and indicated by the assertion of the trie_result signal. Once all the IP �elds
have passed through the IPrx module a packet_present signal is asserted if the
IP packet's protocol �eld indicates that a TCP datagram is encapsulated within
the IP packet.

A simulation of this process can be seen in �gure 10.

Figure 10: A simulation of the IPrx module's functionality.

5.2.3 TCPrx Module

The TCPrx module operates in a similar way to the IPrx module but is activated
by the datagram_present signal from the IPrx module. The TCPrx module
records the port numbers contained in the TCP datagram and passes them to
the PortBitVec module. For each port number speci�ed in the rule set the
PortBitVec module contains a description of AND, OR and NOT operations
that can determine if a number (the port number in the TCP datagram) is
equal to, greater than or less than a given number (speci�ed in the rule set) in
binary form.

However this method uses hundreds of Boolean operations even for a small
rule set of only ten rules and is expensive in terms of the number of resources
required. The bits of the port numbers are placed at the inputs to these oper-
ations and the resulting TRUE or FALSE results indicating a match to a rule
are recorded in a bit vector similar to the one returned by the IPrx module.

Figure 11 shows a simulation of the function of the TCPrx module. An
interesting factor to note at this point is that the TCPrx uses a byte counter
to recognise the bytes of the TCP datagram that contain the port numbers and

11



as such similar modules can be constructed , based upon the structure of the
TCPrx module, to parse datagrams for other transport protocols.

Figure 11: A simulation of the TCPrx module's functionality.

5.2.4 Other Modules

The bit vectors returned from the IPrx and TCPrx modules are AND'ed to-
gether by the Aggregator module which passes the result to the Count module
which increments the counters for the rules matched by a packet. When re-
quested the user can press a button on the development board to pass the rules
counts at that time out over a serial RS-232 interface.

6 Discussion

Chapter �ve described the implementation of a packet �lter on an FPGA plat-
form. This implementation has a few advantages and disadvantages. An ad-
vantage of this implementation is that data is read in every clock cycle and it
is estimated that one clock cycle is required each for the Trie and PortBitVec
modules to perform their matching operations.

Therefore it is estimated that 76 clock cycles are required to read in all the
�elds of interest (because a nybble of data arrives each clock cycle) and for the
Trie module to return its result and then other clock cycle for the PortBitVec
to return a result i.e. only one extra clock cycle is incurred by the �lter rule set
regardless of the size of the rule set.

However the time advantage of the �lter is o�set by the number of FPGA
resources required to store the bit masks and the resources required by the
PortBitVec module in matching the port numbers. The design described in
chapter �ve was implemented with only ten �lter rules as an indication of what
its performance may be during operation and used 9% of the 4 input look up
table (LUT) devices used for logic on the FPGA device.

Not all logic LUTs were used for rule checking however and by varying the
rule set between best case and worst case it was found that there was a 3%
di�erence in the number of LUTs required in each case. It is therefore feasible
to scale up the sample rule set from 10 to possibly 100 rules thereby increasing
the e�ectiveness and granularity of the rule set.

12



7 Conclusion

This paper describes a simple modularised packet �lter implemented on an
FPGA device that can be expected to operate at line speeds when placed on
connection with a transmission speed of 100Mbps or slower. This �lter can store
and match packets against a variety of rules with the purpose of recording the
number of times rules are matched and the counts can be returned to the user
via serial interface.

Although currently the design parses only TCP packets the modular design
of the �lter means that support for other protocols can be added with relative
ease to expand the versatility of the �lter device.

References

[1] Lim Ming Hai. Overview of ethernet, 1997.

[2] Ji Li, Haiyang Liu, and Karen Sollins. Scalable packet classi�cation using
bit vector aggregating and folding. Technical report, MIT-LCS, 2003.

[3] Alastair Nottingham and Barry Irwin. Gpu packet classi�cation using
opencl: A consideration of viable classi�cation methods. In Proceedings
of the 2009 Annual Research Conference of the South African Institute of
Computer Scientists and Information Technologists, pages 160 � 169, 2009.

[4] V. Srinivasan, G. Vargheset, S. Suri, and M. Waldvogelg. Fast and scalable
layer 4 switching. In ACM SIGCOMM Computer Communication Review,
1998.

[5] Rishard Stevens. TCP/IP Illustrated, volume One. Addison Wesley Long-
man, Inc., thirteen edition, 1999.

[6] David E. Taylor. Survey and taxonomy of packet classi�cation techniques.
ACM Computing Surveys, 2005.

13


