
Hardware Based Packet Filtering Using

FPGAs

Submitted in partial ful�lment

of the requirements of the degree of

Bachelor of Science Honours in Computer Science

of Rhodes University

Timothy Whelan

Grahamstown, South Africa

01 November 2010

Abstract

This paper seeks to understand the operation of packet �lters implemented on FPGAs as

high speed platforms and evaluates the suitability of FPGAs as platforms for packet �lter

implementation. It must be remembered that packet �lters need to operate at line speeds

or else they become detrimental to the health of any network they may be placed upon by

introducing signi�cant delays. This task is approached by a novice to the world of FPGAs

and hardware description languages and begins with a review of other implementations

of packet �lters on FPGAs. The design of a simple packet �lter that �lters packets based

upon transport protocol, IP addresses and port numbers is presented. The packet �lter in

this work is not realised on a FPGA device but its logical design is veri�ed with the use

of ModelSim Starter Edition. The end product of this endeavour is a kernel upon which

the �lter can be expanded and the rea�rmation that FPGAs are successful candidates

for packet �lter platforms.

ACM Computing Classi�cation System Classi�cation

Categories and subject descriptors:

B.2.m [Arithmetic and Logic Structures]: FPGA Platform

C.3 [Special Purpose and Application-Based Systems]: Dedicated hardware

General Terms: Packet �ltering, VHDL

Acknowledgements

I thank Shaun Bangay for his continued help throughout the year on matters relating to

VHDL. My thanks also to the Rhodes University Departement of Physics and Electronics

for the loan of their equipment and expertise on the subject of hardware interfaces. I

would also like to thank my supervisor, Mr Barry Irwin, for putting himself up to the

task of guiding me through the year. My parents deserve a huge thank you for continuing

to support me in whatever I do. I thank Telkom SA, Comverse SA, Stortech, Tellabs,

Easttel, Bright Ideas Projects 39 and THRIP who provided �nancial and technical support

through the Telkcom Centre of Excellence at Rhodes University. I also wish to thank the

National Research Foundation for their �nancial contribution to my project too.

Contents

1 Introduction 2

1.1 Problem Statement . 2

1.2 Research Goal . 3

1.3 Motivation for Research . 3

2 Literature review 4

2.1 Description of Network Telescopes . 4

2.2 Description of FPGA's . 4

2.2.1 Memory in FPGAs . 5

2.2.1.1 Antifuses . 6

2.2.1.2 Static Random Access Memory 6

2.2.1.3 Erasable Programmable Read Only Memory (EEPROM) . 7

2.2.2 General FPGA Structure . 7

2.2.3 Example FPGA Applications . 9

2.3 FPGA Methods for Packet Processing . 10

2.3.1 Packet Classi�cation . 10

2.3.2 Deep Packet Inspection . 19

2.3.3 Related Work . 24

2.4 Packet structure . 25

2

CONTENTS 3

3 Design and Implementation 27

3.1 Design Overview . 27

3.2 Module Descriptions . 30

3.2.1 Ethernet module . 30

3.2.2 IPrx module . 34

3.2.3 Trie module . 35

3.2.4 TCPrx module . 36

3.2.5 PortBitVec module . 37

3.2.6 Aggregator module . 38

3.2.7 Count module . 40

3.2.7.1 Report module . 41

4 Results 43

5 Discussion 47

6 Conclusion 49

6.1 Future Extensions . 50

6.1.1 Expanding �lter capabilities . 50

6.1.2 Means of reporting rule counts . 51

List of Figures

2.1 Structure of an FPGA [4] . 5

2.2 An antifuse semiconducting device (adapted from [10]). 6

2.3 A single bit of SRAM [10] . 6

2.4 Spartan-II CLB slice . 8

2.5 Dest-trie representing the source addresses in the �lter set. [24] 12

2.6 The general trie structure. [24] . 13

2.7 The process of forming cross-products (from Taylor[26]). 14

2.8 A geometric view of the packet classi�cation problem. [17] 15

2.9 Regions in D-space showing �lters and bit vectors for regions along each

dimension (N = 11; D = 2) (Figure adapted from [17]) 16

2.10 A table of tuples derived from a �lter set and a diagram of the associated

encoding of port ranges.[26] . 17

2.11 The structure of the system described by Cho and Magione-Smith [5] . . . 20

2.12 The structure of the content pattern matcher developed by Cho and Magione-

Smith [5] . 21

2.13 The DFA content scanning module presented in [14]. 23

2.14 The structure of an Ethernet frame. 25

2.15 The structure of an IP packet. 26

4

LIST OF FIGURES 5

2.16 The structure of a UDP datagram. 26

2.17 The structure of TCP datagrams. 26

3.1 An overview of the �lter design showing the modules and the signals be-

tween modules. 29

3.2 The FSM that captures the behaviour of the Ethernet module. 31

3.3 Traces showing the operation of the Ethernet module a) when an IP packet

is encapsulated within and Ethernet frame and b) when the Ethernet frame

does not contain an IP packet. 33

3.4 A trace output showing the behaviour of the IPrx and Trie modules. 35

3.5 A trace output showing the behaviour of the TCPrx and PortBitVec modules 37

3.6 The FSM describing the behaviour of the Aggregator component 39

3.7 A trace output showing the bahviour of the Aggregator component's output

signals relative to the module's input signals. 39

3.8 A trace output showing the behaviour of the Count module when updating

the rule counters after a packet has been through the matching process. . . 40

3.9 The FSM that captures the behaviour of the Report module when asked

to transmit the rule counts for the �lter rules in the rule set. 42

List of Tables

2.1 Example �lter rule set (from Srinivasan et al [24]) 12

4.1 LUT resource usage for best and worst case rule forms (ten rules) 46

1

Chapter 1

Introduction

As information systems increase in size and complexity the task of data acquisition and

processing in and of such systems becomes ever more arduous and computationally ex-

pensive. To cope with the sheer size of the tasks required new and faster techniques

and systems are required to be developed; often appearing as either software packages or

primarily hardware based systems such as the systems described in this paper. The par-

ticular form of data processing discussed in this paper is that of packet �ltering. In many

network management areas it is advantageous to be able to leverage e�cient techniques

in packet �ltering to monitor tra�c behaviour at the boundary of a network. Other tools,

such as network telescopes collect vast numbers of packets which can then be examined

at a later stage for e�ects of events around the Internet such as back-scatter from attacks

on other networks. However, typically such analysis will only �nd a small portion of the

collected packets relevant but the entire set needs to be searched exhaustively to locate

the relevant packets. Hence a tool is required to quickly match a sample packet against

a set of criteria.

1.1 Problem Statement

The problem of packet classi�cation resides in the known structure of packet headers from

network and transport layers. Packet structure will be described in detail later in this

paper but in short a packet header is comprised of multiple �elds with varying values for

each packet. Packets are classi�ed according to the positive or negative matching of N

�elds of the packet (an N-tuple) to a series of values. Each N-tuple of values to be matched

2

1.2. RESEARCH GOAL 3

against is termed a rule and the collection of rules is a rule set. Typically packets are

classi�ed according to a 5-tuple consisting of source and destination IP addresses, source

and destination port numbers and the protocol number of the packet. Once a packet has

been classi�ed according to one or more rules a course of action can be determined for

the classi�ed packet.

1.2 Research Goal

The aim of this project is to produce a packet �lter implemented on an FPGA that can

accept an IP packet from an Ethernet connection. The FPGA must then match the packet

to one or more rules in a rule set and record a count of how many times each rule in the

rule set has been matched. A count of the rules matched will be sent to a pre-determined

network node upon request via a serial RS-232 interface.

1.3 Motivation for Research

While software packages such as Snort IDS have been developed to perform packet �ltering

they require innovative algorithms to overcome time spent waiting for resources shared

with other processes such as CPU's. On the other hand hardware systems can remain

dedicated to the task for which they have been designed and therefore have a signi�cant

advantage over software systems in this regard. However hardware systems often require

expensive design and production procedures so if a relatively cheap technology can be

developed and used for data processing, and particularly designed for packet �ltering, then

the computing power of hardware can be focused on a single application while maintaining

cost-e�ectiveness.

These objectives together with the requirement that the system is capable of regular

updates without signi�cant e�ort leads one to examine FPGA's as a possible platform

on which to develop such a system. FPGA's have been used before as platforms for

rapid prototyping to test hardware con�gurations before creating the tested design as an

application speci�c integrated circuit (ASIC), FPGA's behave similarly to ASIC's without

eliminating the option of altering parts of the design after implementation � in the systems

described in this paper such alterations correspond to changing the rule set of the packet

�lter. The development of such a system would be bene�cial to any task requiring the

rapid processing and �ltering of packets in an a�ordable manner.

Chapter 2

Literature review

This literature review brie�y describes the role of network telescopes before detailing the

operation of FPGA's. Then a few algorithms for packet classi�cation and deep packet

inspection are described. Lastly related work describing previous projects that implement

various packet processing tasks on FPGA's is reviewed to demonstrate the suitability of

FPGA's to this �eld of research.

2.1 Description of Network Telescopes

A network telescope resides on a portion of IP space which should receive very little

legitimate internet tra�c [13]. Network telescopes passively collect data from networks

and the data collected can be used to observe events on the Internet. As can be seen in

[27], useful attributes of network tra�c one might measure include source and destination

IP addresses and destination port. Reasonably, one might wish to extend this list to

include source port addresses and protocols used in the packet if they can be identi�ed.

2.2 Description of FPGA's

As described by the Altera Corporation in [1] FPGA's can ful�l any programmable func-

tion that could be implemented on an application speci�c integrated circuit (ASIC) but

also provide the ability to recon�gure the FPGA to provide altered functionality. Whilst

4

2.2. DESCRIPTION OF FPGA'S 5

many other pieces of hardware exist that can be programmed to perform a certain func-

tion, and these hardware con�gurations can also be reprogrammed, FPGA's have become

important in industry as the only �eld programmable logic devices that can provide a

very high logic capacity on a single chip [4]. Simple programmable logic devices (PLD's)

typically execute product and sum instructions on two levels of programmability; an

AND-plane that AND's inputs together in an e�ective multiplication and an OR-plane

that may or may not be programmable and which OR's its inputs [4, 10]. PLD's operate

on two-state logic levels but FPGA's are designed to be able to operate using multi-level

logic. The consequence of this design is that the complexity of the computational cir-

cuitry that can be programmed on an FPGA greatly exceeds that which can be placed

on a PLD. Figure 2.1 shows a simpli�ed structure of FPGAs.

Figure 2.1: Structure of an FPGA [4]

2.2.1 Memory in FPGAs

The structure of an FPGA consists of con�gurable logic blocks with various interconnects

between the con�gurable logic blocks as shown in �gure 2.1 [10]. To provide functionality

to an FPGA one speci�es interconnects there by linking the di�erent logic components.

FPGA's retain their functionality in three ways; the instructions programmed on an

FPGA are stored in antifuse con�gurations, EPROM/EEPROM or SRAM blocks [10].

What follows is a brief description of three memory technologies used in FPGA's as

illustrated in [10].

2.2. DESCRIPTION OF FPGA'S 6

2.2.1.1 Antifuses

Antifuses are semi-conductor components that provide electronic insulation until a suf-

�ciently high voltage is placed across the device at which point the insulating ability of

the components of the device is destroyed � the antifuse behaves as a typical fuse but is

meant to be `fused' to allow current to �ow through the device. Antifuses however cannot

be `unfused' hence once the antifuse block of an FPGA has been programmed it cannot

be reprogrammed [10]. Figure 2.2 provides a diagrammatic sketch of an antifuse.

Figure 2.2: An antifuse semiconducting device (adapted from [10]).

2.2.1.2 Static Random Access Memory

To allow the FPGA to be reprogrammed it may be provided with blocks of static random

access memory, or SRAM. SRAM bit construction is shown in �gure 2.3. When a write

instruction, logic 1, is placed on the gate of the control transistor data can �ow into the

inverter system which maintains any logic level placed in it. When logic 0 is placed on the

gate of the control transistor then no change can occur to the logic placed in the inverter

system while it is supplied with power. Should power to the SRAM bit be lost however

then the data written to the SRAM bit will be lost. Therefore a weakness of FPGA's

that are built using SRAM blocks of memory is that each time the device is powered on

it must be reprogrammed.

Figure 2.3: A single bit of SRAM [10]

2.2. DESCRIPTION OF FPGA'S 7

2.2.1.3 Erasable Programmable Read Only Memory (EEPROM)

The weakness of using volatile SRAM in FPGA's can be mitigated by making use of

EPROM. In short, a voltage is placed across the gate structure of an EPROM bit thereby

inducing a change in the internal structure of the semi-conductor. This change in structure

can be reversed by shining UV light on the device which causes the device to revert back

to its original state. The advantage of using EPROM over SRAM as the memory that

stores the functionality of the FPGA is that the change in the device's structure does

not need to be maintained by supplying power to the device which means that the device

need not be programmed upon powering up but rather only once when the program logic

is �rst transferred to the device.

2.2.2 General FPGA Structure

The general structure of FPGA's is that of many con�gurable logic blocks (CLB's) that

are interconnected by routing lines of di�erent types that perform slightly di�erent routing

functions [29, 10]. Figure 2.4 shows the structure of a Xilinx Spartan-II FPGA's CLB

slice, a portion of the CLB. There are two such slices on a CLB [29]. What follows is the

structure of the Xilinx Spartan-II family of FPGAs taken from the Spartan-II databook

[29]. This description, while for a speci�c class of FPGA, serves to demonstrate the

general principles on which FPGA's operate.

2.2. DESCRIPTION OF FPGA'S 8

Figure 2.4: Spartan-II CLB slice

As can be seen in �gure 2.4, a CLB slice is composed of a look up table (LUT), carry

and control circuitry and a D-type �ip-�op which can store the output from the carry

and control circuitry. This con�guration is termed a logic cell (LC) and a CLB may

have one or more LC's that together make up a slice of a CLB. Multiple slices then

make up a CLB. To program the FPGA with certain functionality the FPGA design

software, normally supplied by the FPGA vendor, maps the high level logic designed by

the FPGA programmer into multiple single-step functions and these functions are then

mapped onto the LUT. The LUT con�gurations are stored using one of the memory

technologies discussed above. LUT's function by specifying the required output for all

inputs to the LUT. The results from CLB's are then routed around the FPGA using

the available routing paths placed on the FPGA. Routing on the FPGA is provided to

2.2. DESCRIPTION OF FPGA'S 9

perform various di�erent functions such as:

� routing between LC's in a CLB to minimise routing delays for functions requiring

more than one LUT to describe,

� direct routing paths between adjacent CLB's for fast binary arithmetic between

adjacent CLB's,

� routing channels through general routing matrices that form meeting points for

horizontal and vertical routing paths that also connect adjacent routing matrices �

general routing matrices specify whether or not connections exist between the lines

entering the general routing matrix,

� prioritised routing paths for clock signals to decrease clock skew and clock delays.

2.2.3 Example FPGA Applications

FPGA's are suitable for a number of high speed processing applications, especially ones

where components can operate in parallel. What follows is a partial list of applications

of FPGA's:

1. FPGA's have been successful platforms on which to implement arti�cial neural

networks [35].

2. The authors of [7] demonstrate a system developed to implement the Advanced

Encryption Standard encryption algorithm at a rate of 150Mbs.

3. FPGA's have proved a viable replacement for dedicated digital signal processing

(DSP) chips and ASIC's [9].

4. Central to the motivation for this literature review is the work done in using FPGA's

to perform packet classi�cation and deep packet inspection [6, 3, 14, 22, 34]. As can

be seen in the sources mentioned, deep packet inspection also often involves string

matching within the payloads of packets.

The focus of the rest of this literature review will focus on FPGA based methods for

packet processing such as packet classi�cation and deep packet inspection.

2.3. FPGA METHODS FOR PACKET PROCESSING 10

2.3 FPGA Methods for Packet Processing

As mentioned before, the motivation for this literature review is to examine and assess

work carried out in the �eld on network packet processing particularly on FPGA platforms.

The literature reviewed decomposes packet processing into two separate actions: packet

classi�cation, typically based on packet headers, and deep packet inspection, typically

string matching within packet payloads to identify data being transferred in the packet

[21, 22].

2.3.1 Packet Classi�cation

To understand the desire to research improved methods for processing of packet headers

one can examine the uses of packet headers and the decisions that can be taken pertaining

to the handling of a packet once its headers have been inspected. Song and Lockwood

mention the use of network packet headers in NIDS in [21]. The rules used in the Snort

IDS typically include a 5-tuple of packet headers; source and destination IP addresses and

port numbers and the protocol being used [21]. The IDS also uses pattern matching, as

described later in this review, when matching rules but uses the header processing to pro-

vide a context in which the pattern matching results can be better utilized [21]. Ravindran

et al describe packet routing and forwarding as another application that bene�ts from

improved methods in header processing [18].

There are many techniques for packet classi�cation based upon multiple header �elds of

a packet and a description of these techniques can be found in [17, 26]. A brief range of

these methods is related below.

Linear Search Suppose that each �lter in a set of �lters were sequentially compared

with the headers of an inspected packet until either a �lter is found that matches the

packet's header �elds or all �lters are unsuccessfully matched to the �lter; this would

constitute an exhaustive, linear search for �lters that match the packet headers [17]. This

approach to packet classi�cation is straight-forward and reliable [17, 26] but provides

poor performance [26] and makes poor use of memory [17, 26] with O(N) memory re-

quirements and performance decreasing proportionally to the size of the �lter set [26].

Taylor does demonstrate a means of reducing the memory requirements of a �lter set

when using exhaustive search techniques but the computational behaviour of exhaustive

2.3. FPGA METHODS FOR PACKET PROCESSING 11

linear searches still make it prohibitively slow for applications requiring high throughput

though it can be used in conjunction with other algorithms in a more complex system

[17, 26]. Linear search techniques do lend themselves well to systems that can provide

parallel processing [17]. Taylor suggests that if a linear search is at one end of a spectrum

of searching techniques, with linear memory and search computational complexities, then

ternary content addressable memory would be at the opposite end of the spectrum with

O(1) computational complexity. Ternary content addressable memory is discussed further

below.

Ternary Content Addressable Memory (TCAM) TCAM is a type of memory that

can store a �don't care� state as well as a 1 or 0 bit value in the memory [21] hence it

is a tri-state memory as described by the word �ternary� in its name. The operation of

CAM memory is practically the converse of conventional memory; a desired piece of data

contained in memory is speci�ed and what is returned is the address or a list of multiple

addresses where the content resides in memory [30]. TCAM is also optimised to search for

content in memory at multiple locations in parallel [26, 30] and all these features of TCAM

memory make it an obvious tool in packet classi�cation based on header processing as

indicated in the related work mentioned in [21] which will be discussed later to illustrate

a hybrid algorithmic approach to the problem of packet classi�cation. However, TCAM

technology has signi�cant drawbacks as described by Taylor [26]:

� TCAM memory has a greater cost per bit than other memory technologies.

� TCAM memory su�ers from ine�cient use of storage space because it cannot store

arbitrary ranges of numbers but instead such ranges need to be converted into `<x'

and `>y' descriptions (where x and y are bit string pre�xes) and extra resources are

required to store the �don't care� value.

� TCAM memory makes use of more transistors than other memories leading to

greater power consumption.

� TCAM memory does not scale very well when input to the TCAM is long.

The above two techniques perform exhaustive searches over the entire �lter set, albeit

with vastly di�ering memory and time requirements. The following techniques perform

restructuring of the �lters and/or the incoming packet's �elds to transform the packet

classi�cation problem into another class of problem and leverage observations that can be

made about �lter sets.

2.3. FPGA METHODS FOR PACKET PROCESSING 12

Grid-of-tries This approach is described more formally in [24] but a brief description

is provided below. Suppose an example �lter set is as in �gure ?? (note that this initial

set represents only source and destination addresses).

Table 2.1: Example �lter rule set (from Srinivasan et al [24])

Filter Destination Source

F1 0* 10*

F2 0* 01*

F3 0* 1*

F4 00* 1*

F5 00* 11*

F6 10* 1*

F7 * 00*

Firstly the desitination addresses of the �lter are used to construct a tree structure as in

�gure 2.5. This enables any incoming packet to be tracked to a node in this tree (termed

the dest-trie) except for the open circle which represents an invalid destination address

pre�x. The leaf nodes of the dest-trie contain pointers to similar trees that represent

decision trees for source addresses relevant to the destination address represented at the

originating leaf nodes of the dest-trie as shown in �gure 2.6. where the reader can see the

pointers from dest-trie to relevant source-trie �lters. Note that source address �lters are

repeated when one dest-trie �lter is a pre�x of another dest-trie �lter.

Figure 2.5: Dest-trie representing the source addresses in the �lter set. [24]

2.3. FPGA METHODS FOR PACKET PROCESSING 13

Figure 2.6: The general trie structure. [24]

The grid-of-tries structure described above can be optimised in many ways and Srinivasan

et al go on to describe some of these optimisations. Notably, the memory requirements of

this structure can be reduced by not repeating �lters in multiple source-tries and search

costs can be reduced by placing pointers from one source-trie node to nodes in other

source-tries so that when a search down one source-trie branch fails a pointer can be

followed to another source-trie and the search can continue without having to perform

redundant searches along higher branches before progressing beyond what was already

processed at the point of failure [24].

Tries however only work well for 2-dimensional �lters [17, 26, 24]. The structure of tries

also means that they are suitable for IP address masks but are not suitable for arbitrary

port ranges without changing the ranges speci�cations into pre�xes, a task which can

signi�cantly increase the number of tries required to adequately describe the desired

�lters [17, 26, 24]. As will be discussed later, the cost of using a trie structure to perform

port �ltering can be made acceptable provided other �lter optimisation techniques are

employed and tries have indeed been used in conjunction with other techniques such as

cross-producting (to be discussed in the next section) in [24] and TCAM's in [21].

Cross-producting Srinivasan et al introduced another technique in [24] as well as

the grid-of-tries approach to packet classi�cation: cross-producting. Cross-producting

operates by performing `best matching pre�x' searches on each �eld in the �lter, possibly

in parallel [17] given that these searches can be done independently [26], and then combing

the results of these independent searches into one more search to provide a �nal overall

2.3. FPGA METHODS FOR PACKET PROCESSING 14

classi�cation. While searching each �eld independently for a best matching pre�x is

relatively simple an e�cient method is required to combine the search results into a �nal

usable result [24]. The scheme proposed by Srinivasan et al proposes dividing �lters into

columns which group the di�erent �eld values by �eld type. Then a cross-product is

formed of these sets to create a list of all possible combinations of �eld values that can be

made from the �eld values in the original �lter set. An example to illustrate this process

is in �gure 2.7.

Cross-producting requires a prioritisation of �elds to enable the �nal cross-products to

be more closely aligned with one �lter than another �lter as once the cross-product of

�lters has been performed each cross-product is labelled with a �lter that best matches

the cross-product. When a packet is received and the closest �eld pre�x for each �eld has

been located independently then this combination of individual �eld �lter pre�xes is used

as a hash to locate the closest matching �lter from the cross-product table.

Figure 2.7: The process of forming cross-products (from Taylor[26]).

Cross-producting, while providing a high throughput, has exponential memory require-

ments, O(Nd) [17, 26]. Srinivasan et al therefore proposed a hybrid approach to packet

classi�cation using their grid-of-tries technique to classify based on destination and then

source matching and cross-producting to match ports and �ags [17, 24, 26].

Bit Vector The bit vector classi�cation technique views the packet classi�cation prob-

lem as a geometric problem with each D-�eld �lter specifying a region in D-dimensional

2.3. FPGA METHODS FOR PACKET PROCESSING 15

space and the classi�cation equates to locating which named region a packet can be said

to be placed in [17, 26], an illustration of this view is given in �gure 2.8. Filtering on two

�elds (Port number and address) results in a two dimensional �lter. The shaded regions

with letters represent �lters and �lters may overlap (darker regions).

Figure 2.8: A geometric view of the packet classi�cation problem. [17]

A brief, simpli�ed, algorithm is adapted from [17] and [26] and described below. Note

that there are N �lters and D types of �elds in each �lter.

1. Prioritise the �lter rules (if priority is irrelevant then priorities can be arbitrary)

2. For each axis

(a) Divide the axis into regions bounded by the points where boundaries of regions

in D-space that are orthogonal to the current axis may intersect the current

axis.

(b) For each region along the current axis

i. Assign an N-bit bit vector equal to zero

ii. If region x in D-space, described by rule x, lies on the current region

A. Then set bit x of the current region's bit vector to 1

A graphical representation of a geometric view of the classi�cation problem can be seen

in �gure 2.8 and a graphical representation of the result of the algorithm can be seen in

�gure 2.9.

2.3. FPGA METHODS FOR PACKET PROCESSING 16

Figure 2.9: Regions in D-space showing �lters and bit vectors for regions along each

dimension (N = 11; D = 2) (Figure adapted from [17])

When an incoming packet is received its �elds are decomposed and each one is processed

independently of the others to locate which �lter pertains to the packet with the given

�eld value. Alternatively one can describe the process as locating which region along each

of the D axes the packet might belong to. The D bit vectors (1 bit vector result from each

�eld or dimension) are then AND'ed together to give a �nal bit vector result with each 1

bit representing a rule that pertains to the packet �elds as a group e.g. a packet with port

number 8 and address 5 will return bit vectors 001 0100 0110 and 001 1000 1001 as seen in

�gure 2.9. When these bit vectors are AND'ed the result will be 001 0000 0000 indicating

that �lter c classi�es the packet. If the rules in each dimension are ordered according to

some priority scheme then the signi�cance of the 1 bits in the �nal bit vector will match

the priority of the rules in the rule set. Li et al [12] describe a bit vector implementation

that uses trie structures instead of taking the multidimensional geometric view described

above.

Tuple Space Sirinivasan et al [23] introduced the tuple space classi�cation algorithm

and Taylor [26] provides a less formal description of the tuple space algorithm. The

tuple space technique makes the observation that while there may be many �lters in a

�lter set, the number of di�erent lengths of pre�xes in the �elds of the �lter is typically

signi�cantly less than the number of �lters [26, 23]. For example, while a 32-bit IP address

could conceivable provide 100's of di�erent IP ranges and speci�c IP addresses to be used

in a �lter, there can only be 32 di�erent lengths of IP address masks or pre�xes in the �lter

set. Using this observation, a description of a �lter in a tuple space technique indicates

2.3. FPGA METHODS FOR PACKET PROCESSING 17

the number of bits in the pre�x describing each �eld in the �lter and the concatenation

of all these indicating numbers is called a tuple [26, 23]. An example from [23] supposes

that if there are two 2-dimensional �lters, F1 = (01*, 111*) and F2 = (11*, 010*) then a

tuple which could describe the �lters is [2, 3].

Port numbers in a �lter set are frequently speci�ed using ranges which make pre�x rep-

resentations inconvenient [23] hence Sirinivasan et al introduced an encoding scheme

whereby port ranges are divided up into Nesting Levels with non-overlapping ranges

and each range within a level is given a locally unique Range ID [26]. Port ranges are

then speci�ed within the tuple using the nesting level that the range is located in. An

example of the complete tuple creating process is given in �gure 2.10 taken from [26].

The description of the protocol �eld within the tuple was simply a `1' if the protocol was

speci�ed exactly or `0' if the protocol �eld �lter contained a ternary character `*' [26].

Figure 2.10: A table of tuples derived from a �lter set and a diagram of the associated

encoding of port ranges.[26]

A variation of the tuple space searching method, called the Pruned Tuple Space Search

described in [26, 23] creates trees of the source and destination pre�xes with nodes con-

taining tuples that may match a packet that maps to that node in the tree. By mapping

the source and destination address of a candidate packet to these trees two lists were

obtained of tuples and the intersection of these lists provided the tuples that needed to

be searched for �lters that may match the candidate packet.

The BV-TCAM Architecture (A hybrid technique) The authors in [21] decided

their system would be required to report all rules which were matched by a packet instead

2.3. FPGA METHODS FOR PACKET PROCESSING 18

of just the rule with the greatest priority that was matched by the packet. The authors

also used a hybrid algorithm in their approach to solving the packet classi�cation problem

and their approach made use of Ternary TCAM and a grid-of-tries. Bit vector outputs

from these two schemes were then combined thus they labelled their architecture the

BV-TCAM architecture [21].

TCAM technology may be fast but it is however expensive in terms of the space required

hence it is very bene�cial to limit the number of entries required in TCAM memory to be

able to perform e�ectively by careful structuring of the entries [21]. Song and Lockwood

achieve this by observing that many rules in a rule set typically share common IP addresses

and protocols but di�er when specifying ports or port ranges. This led the authors to use

TCAM technology to check matches in IP address and protocol �elds. Port speci�cations

were checked using a bit vector algorithm as TCAM is not very well suited to checking

the arbitrary ranges that one �nds for port �elds in �lters as mentioned earlier in the

discussion focussing on TCAM technology.

The output of the IP addresses and protocol matching TCAM mechanism was encoded in

a separate bit vector which had a bit length equal to the number of rules being checked.

If a packet matched a certain rule then the corresponding bit in the bit vector was set

to 1 otherwise it remained set to 0. To match port numbers the authors created a trie

structure, The port numbers were mapped down the trie with branch selection governed

by the presence of a 1 or 0 at the currently inspected bit of the port number binary

value, this is the origin of the bit vector description in the algorithm. Branches in the

trie structure extend until either they represent the exact port address to be matched or,

in the case of port ranges, the pre�x of the port number represented up to that point is

su�cient to describe the range of port numbers. Each leaf node of the trie then contained

a bit vector indicating which rules had been matched in an identical method to that

reported from the TCAM segment of the classi�cation unit. The combination of these

two segments, the TCAM and the BV method, then produced a �nal result indicating

which rules a given packet had matched.

The BV-TCAM architecture developed by Song and Lockwood achieved a throughput

capable of operating at a rate of 2.488 Gbps [21]. It is therefore also a good demonstration

of how separate technologies and algorithms can be combined to form a hybridized system.

2.3. FPGA METHODS FOR PACKET PROCESSING 19

2.3.2 Deep Packet Inspection

As mentioned earlier, deep packet inspection forms a key part of packet processing for

the aim of defence of a network [14]. This often requires scanning the payload of packets,

and the packet headers in some instances, to locate malicious data embedded within the

packet by attempting to locate speci�c search strings within packets. [5, 6, 3, 14, 22]

demonstrate di�erent algorithms for such tasks which will be discussed below.

Cho et al [6], like a few of the other sources that discuss deep packet inspection [5, 22],

make reference to Snort IDS rule sets. Brie�y, �Snort is an open source network intrusion

prevention and detection system� [11] that is able to detect packets on network interfaces

and perform various actions based upon di�erent properties of the packets detected [20].

This is done by applying rules contained in a rule �le that form a rule set to each packet

that Snort detects [20]. Relevant to deep packet inspection is the ability of Snort to locate

strings speci�ed in Snort rules within network packets [20].

Simple N Parallel Rule Checks A simple approach described in [5] is to have N

comparators to match N strings for N rules. Each rule can then be treated independently

and matching for all rules can occur in parallel. An illustration of the system is shown

in �gure 2.11 [5] where one can see that some initial processing on the packet headers

is done �rst to check which rules for packet content matching need to be checked. The

authors of [5] go on to address the problem of determining which rule has been matched

once any match has been detected.

2.3. FPGA METHODS FOR PACKET PROCESSING 20

Figure 2.11: The structure of the system described by Cho and Magione-Smith [5]

Figure 2.12 shows how the content matching portion of the design operates by matching

a four byte portion of the packet against a sample string with four di�erent o�sets.. If

one assumes that a packet will only match one rule then the index of the rule matched is

encoded in a binary number whose bits are used to navigate a path down a binary tree

to the matched rule.

2.3. FPGA METHODS FOR PACKET PROCESSING 21

Figure 2.12: The structure of the content pattern matcher developed by Cho and Magione-

Smith [5]

If more than one pattern is matched in a packet however then it becomes impossible to

determine which patterns have been matched by looking at the index encoder output.

Cho and Magione-Smith [5] then propose dividing the rules into multiple sets with no

overlapping patterns, so that no more than one rule in a set can be �red by a packet at

a time, and assigning to each set an index decoder as described above. This however has

obvious increasing space requirements as the number of required index encoders increases

with the number of rule sets.

Sourdis and Pnevmatikatos demonstrate in [22] a system similar to that of Cho and

Magione-Smith described above but make use of a fan-out structure to essentially copy

the packet to many comparator networks that check for the occurrence for patterns in the

packet as explained earlier in [5]. Other noticeable di�erences between the approaches of

Cho and Magione-Smith compared to that of Sourdis and Pnevmatikatos are:

� the assumption by Sourdis and Pnevmatikatos that only one pattern will be matched

in their system at a time, provided that di�erent pattern su�xes are used [22],

enabling the use of a simple index encoder similar to that proposed in [5],

� and careful design of the pipelined comparator so as to conveniently make use of the

one 4-input LUT and single �ip-�op to identify half bytes of characters and then

AND-ing the outputs of the LUT's to form a complete pattern match output.

2.3. FPGA METHODS FOR PACKET PROCESSING 22

The technique of matching the pattern to be identi�ed at di�erent one byte o�sets within

packet used in [5] is also repeated in [22].

Deterministic Finite State Automata in FPGA's An approach to pattern match-

ing within a sample space is to use deterministic �nite state automata (DFAs) and these

have been successfully implemented on FPGA's as the work of Moscola et al demonstrates

in [14].

In their work, Moscola et al �rst demonstrate brie�y how a pattern composed of characters

from a �nite alphabet can be described using regular expressions, an example is given

below: �Vi(R|r)u(S|s)� would represent the patterns Virus, ViRus, ViruS and ViRuS.

Symbols such as `*' can be used to represent multiple occurrences of characters or character

sets within a pattern [14].

Moscola et al then state the bene�ts of DFA's over Non-deterministic Finite Automata

(NFA's), namely the less space required for a completed DFA than for a completed NFA

without consideration for the space required during construction of either automaton [14].

Moscola et al parse the pattern for each rule through an application called JLex which

constructs a DFA that can identify the regular expression for the desired pattern and

the output from JLex is then used to generate VHDL source code which is then used to

program the FPGA in the �nal implementation (VHDL is a hardware design language

used to specify the functionality of FPGA's).

The action of the system presented in [14] is described as follows:

1. various protocol wrappers remove the di�erent protocols that may surround the

payload of a packet,

2. the packet is then routed through multiple content scanning modules which use the

DFA's programmed onto the FPGA to search for the patterns to be identi�ed,

3. once the packet payload has passed through all content scanning modules the ap-

propriate actions are taken with regard to the patterns identi�ed,

4. appropriate actions may include dropping the malicious packet, sending an alert

message to a speci�ed network address and outputting the packet from the content

scanning module after wrapping the packet in the protocol headers stripped from

the packet prior to searching.

2.3. FPGA METHODS FOR PACKET PROCESSING 23

Figure 2.13 shows a block diagram of the content scanning module presented by Moscola

et al as it appears in [14].

Figure 2.13: The DFA content scanning module presented in [14].

Moscola et al state that their system presents data to the content scanning module at

32 bits per clock cycle and note that their system passes data to their regular expression

DFA's - (REn DFA) in the diagram above � at a rate of 8 bits per clock cycle. Since this

would produce a back log in the system Moscola et al designed their system to present

packets to one of four content scanning modules selected in a round-robin method thereby

achieving a 32 bit per clock cycle processing rate to match the 32 bit per cycle incoming

and outgoing rates of the system.

An alternate approach describe by Baker and Prasanna in [2] which `uses a modi�ed

version of the KMP (Knuth, Morris, Pratt) algorithm' [2]. Brie�y, the KMP algorithm

is able to detect possible occurrences of a pattern within a string and upon a mismatch

does not start the next search from very next o�set in the string but rather from the next

possible start of the pattern in the string [19]. Suppose the pattern is 123 and the string

is 121231 the �rst search for the patter will start at o�set 0 but when a mismatch occurs

at the third character then the algorithm starts the next possible match at the third

character rather than the next o�set (which would be at the second character) because

the next position in the string at which the patter may be matched is the third character.

The KMP algorithm has worst case behaviour O(k + n) [2]. Baker and Prasanna state

2.3. FPGA METHODS FOR PACKET PROCESSING 24

that even though other algorithms may have better average case performances than the

KMP algorithm no other algorithm has a more e�cient worst case performance. Baker

and Prassana then describe this property of the KMP algorithm as important because an

attacker may try to �ood an intrusion detection system in an attempt to force through

some malicious packets past the IDS; obviously the best way for an attacker to do this

would be to construct packages of the worst case for the IDS. The result of using the

KMP algorithm is that this worst case then has O(k + n) behaviour [2].

The contribution of Baker and Prasanna is their demonstration that by adding a second

comparator and an input bu�er (the minimum size of which Baker and Prasanna derive)

the KMP algorithm can be used and the resulting system can always accept at least

one input character per cycle of operation [2]. This is an obvious improvement over the

traditional approach of using a single comparator which results in the system being able

to accept at most one input character per cycle of operation [2], a condition that can be

seen to lead to the type of attack mentioned earlier where worst-case packets are injected

into the input stream in an attempt to �ood the IDS.

2.3.3 Related Work

The authors of [8] describe the implementation of a packet generator built on an FPGA.

The NetFPGA platform is an open source development platform for creating and testing

of network applications [15]. The packet generator described in [8] is able to achieve a

transmission rate of 1000Mbps which is faster than the comparative test that the authors

performed using the tcpreplay software. Noticeable results in [8] are the speed at which

the NetFPGA platform packet generator was able to transmit packets and the small

(<1us) variation in packet arrival time when sent using the NetFPGA packet generator

indicating that the packet generator is suitable for time sensitive networking applications

[8].

Another packet inspection and processing system implemented on an FPGA is described

in [28]. The system created uses an FPGA as an accelerator to an IPS which analysis

each packet passing through the FPGA and determines a course of action for each packet;

forward the packet, drop the packet or pass the packet on to the IPS for inspection [28].

Similar to the system described in this paper the system described in [28] classi�es packets

based upon packet headers [28].

2.4. PACKET STRUCTURE 25

2.4 Packet structure

When an application wants to send data across a network it is passed down through each

protocol layer which then attaches headers to the data before passing the encapsulated

data to the next layer down [25]. The header structure of a protocol is a feature of the

protocol which is rigidly de�ned and well known; as mentioned before the fact that these

structures are well known is leveraged to inspect the �elds in the headers of the protocols.

The header structures of the common protocols Enthernet, IP, UDP and TCP are shown in

�gures 2.14, 2.15, 2.16 and 2.17 respectively. The Ethernet frame is what is transmitted on

the network medium and all other headers and the packet payload are encapsulated within

the data portion of the Ethernet frame. IP packets are encapsulated within Ethernet

frames when transmitted over an Ethernet network. UDP and TCP are two widely used

protocols for transporting data. UDP and TCP datagrams are encapsulated within IP

Packets when transmitted over networks that use the IP protocol such as the Internet.

TCP o�ers a reliable, stateful and �ow-controlled alternative to UDP.

Figure 2.14: The structure of an Ethernet frame.

2.4. PACKET STRUCTURE 26

Figure 2.15: The structure of an IP packet.

Figure 2.16: The structure of a UDP datagram.

Figure 2.17: The structure of TCP datagrams.

Chapter 3

Design and Implementation

The packet �lter described in this work was to implemented on a Spartan-3AN devel-

opment kit. This development board was chosen because it had a variety of interfaces

including an Ethernet PHY chip on the board and standard RJ45 Ethernet connector,

obviously vital components for a project the required receiving data from an Ethernet

connection. The board also came with 512MB of RAM memory which could be incor-

portated into the design and the multiple interfaces ensured that the board's application

could remain versatile.

3.1 Design Overview

The overall design of the packet �lter is modularised to allow easy expansion of the design

to include more components for expansion of functionality. Modularisation of the design

also allowed the developer to leverage the modular structure of packets with each module

performing a speci�c task. The modules in the design are as follows:

� An Ethernet module that reads in nibbles of data from an Ethernet connection and

outputs IP packets.

� An IPrx module that reads in bytes of IP packets and records the protocol and IP

address �elds.

� A TCPrx module that teads bytes of a TCP datagram and records the port number

�elds.

27

3.1. DESIGN OVERVIEW 28

� A Trie module that matches protocol �elds and IP addresses to rules stored in the

design.

� A PortBitVec module that matches port numbers to rules stored in the design.

� An Aggregator module that accepts the outputs from the IPrx and TCPrx modules.

� A Count module that records the number of times that packets match rules stored.

� A Report module that reads the counts of rules and reports them over a serial RS-232

interface.

A diagram of the design is shown in �gure 3.1 depicting the relative logical positions of

the modules and the signals between them (single bit signals are shown with thin lines

and multi-bit buses are depicted with thick lines). The �lter described in this paper has

provisions to keep a count of ten rules. It was decided that ten rules was an adequate

number of rules to demonstrate the functionality of the �lter design.

3.1. DESIGN OVERVIEW 29

Figure 3.1: An overview of the �lter design showing the modules and the signals between

modules.

3.2. MODULE DESCRIPTIONS 30

3.2 Module Descriptions

This sub-section provides a description of how each module in the design operates and

how the modules interface with each other. It should be noted that �nite state machines

(FSMs) were used extensively within the design of certain modules and will be described

in detail in the relevant modules.

3.2.1 Ethernet module

As indicated at the start of this chapter the development board has a 10/100 Ethernet

physical layer interface (PHY) connected to a standard RL-45 Ethernet Connector [32].

These allow one to connect the FPGA device to an Ethernet network. The documentation

for the development board lists the following signals available between the FPGA device

and the Ethernet PHY:

E_TXD Transmit data bus to PHY (5 bits, MSB is the Media Independent Interface

(MII) error bit)

E_TX_EN Transmit enable signal to PHY

E_TX_CLK Transmit clock to PHY (25MHz for 100Mbs operation

E_RXD Data received from PHY (5 bits, MSB is the MII error bit)

E_RX_DV Receive Data Valid signal from PHY

E_RX_CLK Data receive clock from PHY (25MHz for 100Mbs operation)

E_CRS Carrier sense signal

E_COL MII collision detect signal

E_MDS Management clock

E_MDIO Management data input/output

E_NRST PHY reset (active low)

3.2. MODULE DESCRIPTIONS 31

For the purposes of implementing a packet �lter the E_RXD, E_RX_CLK, and E_RXDV

signals (termed RD_DATA, RX_CLK and RX_DV signals respectively in this report)

were used to read data from the PHY. Since the application of this speci�c packet �lter

was to �lter packets captured previously it was deemed unnecessary to detect errors in

packet transmission as such packets would have been dropped when captured and need

not require �ltering. Furthermore since the packet �lter was to operate as a purely passive

listening device no operation was required to transmit packets to the PHY and then onto

an Ethernet network, all transmission based signals and PHY management signals were

also ignored.

The task of the Ethernet module was to read data coming from the PHY a nybble at a

time, strip the Ethernet �elds from the Ethernet frame, determine if the frame contained

an IP packet and notify the IPrx module if an IP packet was present in the frame while

passing full bytes of data to the IPrx module. Since data received from the PHY was

delivered `low-nybble �rst' the Ethernet module also had the task of ensuring that nybbles

within a byte of data were ordered correctly. The required behaviour of the Ethernet

module is described (and was implemented) in the FSM shown in �gure 3.2 .

Figure 3.2: The FSM that captures the behaviour of the Ethernet module.

The Ethernet module remains in the Idle state until the RX_DV �ag is asserted. When

in the Idle state the byte counter is reset to zero. When the RX_DV �ag is set the

value of RX_DATA is copied to a four bit register (low_nybble) on the rising edge of the

RX_CLK. The FSM then transitions to the HighNybble state on the falling edge of the

RX_CLK.

When in the HighNybble state if less than 13 bytes of data have been received the value

of RX_DATA is ignored as it is merely a portion of the Ethernet MAC addresses and

of no interest else if 13 or 14 bytes of data have been received then the upper and lower

nybbles are copied to a 16 bit register (frame_type) to store the value of the network layer

3.2. MODULE DESCRIPTIONS 32

protocol �eld. After the 15th byte has been received the frame_type register checked to

see if it matches the network protocol value for IP (0x0800) and the byte counter stops

incrementing on each byte. If the network protocol is determined to be that of the IP

protocol (0x0800) then a �ag (new_packet_data) is raised to indicate to other modules

that a full byte has been received and another �ag (packet_present) is raised to alert the

IPrx module that an IP packet has been detected and is being received. On the falling

edge of the RX_CLK the FSM transitions to the LowNybble state.

When in the LowNybble state the new_packet_data �ag is de-asserted and the value of

RX_DATA is copied to the four bit register low_nybble. If the RX_DV �ag is de-asserted

then the FSM transitions back to the Idle state otherwise the FSM then transitions

to the HighNybble state. The FSM constantly oscillates between the HighNybble and

LowNybble states in this fashion until the RX_DV �ag is de-asserted after the last full

byte of a frame has been received.

The InvalidFrame state is a special state that occurs if the frame_type register does

not hold the value after the 15th byte has been received. This check is performed as

mentioned in the HighNybble state. When in the InvalidFrame state new_packet_data,

packet_data and packet_present are all de-asserted. The FSM remains in this state until

the packet has been fully received and the RX_DV �ag is de-asserted whereupon the

FSM transitions back to the Idle state. A screen shot depicting the signals and state

transitions within the Ethernet module during normal operation and for an invalid packet

is shown in �gure 3.3.

3.2. MODULE DESCRIPTIONS 33

Figure 3.3: Traces showing the operation of the Ethernet module a) when an IP packet

is encapsulated within and Ethernet frame and b) when the Ethernet frame does not

contain an IP packet.

3.2. MODULE DESCRIPTIONS 34

Figure 3.3 is a screenshot from ModelSim output depicting the operation of the Ether-

net module. In trace (a) the protocol �eld value is set to 0x0800 and the reader can

observe that once the network layer protocol has been identi�ed as the IP protocol the

packet_present �ag is raised and the new_packet_data is raised each time a new byte is

received.

In trace (b) the protocol �eld value is set one other than 0x0800 and the packet_present

and new_packet_data �ags are never raised.. In both diagrams is can be seen that even

though nybbles may still be received on the RX_DATA bus once the RX_DV �ag is de-

asserted the packet_present and new_packet_data �ags are also de-asserted. Note that

nybbles from bytes are received lower nybble �rst and note too the di�erent behaviour

when the protocol �eld value (frame_type) is changed from 0x0800 (in �gure 3.3 (a)) to

another value (as in �gure 3.3 (b)). As can be seen in the diagram the nybbles received are

always paired to form bytes but that the new_packet_data and packet_present signals

are only de-asserted if the frame_type register is 0x0800.

3.2.2 IPrx module

The IPrx module is activated by the packet_present signal that is driven by the Ethernet

module. The packet_present signal is asserted when an IP packet is detected by the

Ethernet module and all Ethernet �elds have passed to the Ethernet module. When

the packet_present signal is asserted the new_packet_data signal, also driven by the

Ethernet module, is used as a clock for the IPrx module in much the same way as the

RX_CLK signal is a clock to the Ethernet module. The functioning of the IPrx module

is captured in a pseudo-state machine with the pseudo-state being the value of a byte

counter that is used to count the number of bytes received by the IPrx module.

Then byte counter is incremented on the falling edge of the new_packet_data signal and

increments until the 20th byte has been received. When the 10th byte is received by the

IPrx module it is stored in a register (transportprot) as this is the protocol �eld of the

IP packet and is used in the rule matching process. The protocol �eld value was also

intended to be used to activate separate and distinct modules to match port numbers

based upon the transport protocol; an example of this use is shown in the TCPrx module.

When bytes 13 � 16 are received they are stored too as they are the source IP address of

the IP packet and bytes 17 � 20 are also stored as they form the destination IP address

of the packet.

3.2. MODULE DESCRIPTIONS 35

The protocol �eld and IP addresses are stored on a 72 bit bus which is connected to the

Trie module. Once the 16th byte has been received two events occur; �rst a �ag is raised

to the Trie module to begin checking if the protocol �eld, and IP addresses match any

rules and secondly a datagram_present �ag is raised to the TCPrx module to notify the

TCPrx module that datagram bytes are currently being received on the packet_data bus

from the Ethernet module.

3.2.3 Trie module

The Trie module is a simple module within the IPrx module with two inputs: a query_trie

signal that activates the module and a 72 bit bus (triedata) structured as (71:64 � protocol

�eld, 63:32 � source IP address, 31:0 � destination IP address). When activated the Trie

module compares the values on the bus to pre-generated bit masks for each rule and if all

the values on the bus match all the bit masks for a given rule the rule is said to match

the packets. What is not shown in the overview diagram is a clocking signal passing into

the IPrx module and passed to the Trie module. The Trie module begins checking rule

bit masks on the rising edge of this clock and all bit masks are checked in parallel.

A �ag (trie_result) is raised on the next falling edge of the clock to alert the IPrx module

that a result for the bit masks has been determined and the results of the bit mask matches

are placed on a n bit bus (trie_output, back to the IPrx module) where n is the number

of rules to be checked by the Trie module. If rule x is matched in the Trie module then

bit x in trie_output is asserted otherwise it is de-asserted. The clock to the Trie module

can be of any frequency provided that its period is double the longest time required for

a bit mask to be matched. A screenshot of a simulation of the function of the IPrx and

Trie modules is given in �gure 3.4.

Figure 3.4: A trace output showing the behaviour of the IPrx and Trie modules.

3.2. MODULE DESCRIPTIONS 36

In �gure 3.4 one can see the incoming bytes to the IPrx module. As stated already these

bytes are received from the Ethernet module on the rising edge of the new_packet_data

signal. If one looks at the trie_data signal one can see how the protocol �eld and IP

addresses are copied to the trie_data signal. The result of the Trie module's matching

of the �elds to rules is asserted at the time marked by the yellow bar but is obscured

in the diagram as the result is de-asserted soon after and not enough space is present to

display the bit vector; the result bit vector has therefore been highlighted on the left of

the diagram and is valid from the yellow bar until the next transition of the trie_output

signal which is the time that the trie_result signal is asserted for.

The trie_output bit vector has the least three signi�cant bits asserted indicating that the

�rst, second and third rules stored in the Trie module matched this particular packet;

that the other bits are all de-asserted indicates that no other rules matched the packet.

When the Trie module has matched the trie_data signal to rules the trie_result �ag is

raised. When the next byte is received on the packet_data signal the datagram_present

signal is asserted as the next byte is part of the transport layer datagram (assuming no

IP options are used).

The Trie module was not hardcoded but rather generated using a small Java application

written by the author. This application reads in rules from a user speci�ed rule �le and

parses it for values of �elds pertaining to the IP packet. These values are then inserted

within the Trie module to enable the Trie module to detect matches to the speci�ed rules.

This auto-generation of the Trie design �le was chosen to allow one to specify customized

rules without requiring knowledge of VHDL.

3.2.4 TCPrx module

The TCPrx module and the PortBitVec module within the TCPrx module are analogous

to the IPrx and Trie modules respectively and are enabled by the IPrx module in a manner

similar to how the IPrx module is enabled by the Ethernet module. The TCPrx module

receives bytes of data from the packet_data signal and uses the new_packet_data signal

as input clock. The datagram_present signal is used as an enable signal to the TCPrx

module.

While the TCPrx module can still read the new_packet_data and packet_data signals

no action will be taken unless two criteria are met: �rst the datagram_present signal

must be asserted by the IPrx module which occurs after the IPrx module has parsed all

3.2. MODULE DESCRIPTIONS 37

the IP �elds and the second criteria is that the transportprot signal � driven by the IPrx

module � is that of the TCP protocol (that is h6).

The design of the TCPrx module also makes use of a byte counter, as the IPrx module

does, to locate speci�c �elds in the transport datagram and the TCPrx module was

designed in a manner that with the alteration of the target byte counter values di�erent

bytes within the datagram would be read. For the TCPrx module the module stores the

�rst four bytes of the datagram as these are respectively the 16 bit source port and 16

bit destination port numbers and are the last two �elds of a TCP/IP packet needed to

match rules based on the basic 5-tuple.

That all transport level protocols contain the port numbers is the basis for the incor-

poration of the transportprot signal as an additional criterion to activate the TCPrx

module; the TCPrx module will only be activated when the IP �elds have been parsed

(the datagram_present signal is asserted) and the datagram is a TCP datagram (when

the transportprot signal carries the value h6).With the alteration of the byte counter

target values the TCPrx module could capture the port numbers for another protocol

located at di�erent locations within the datagram; this idea is expanded on later in this

paper (see section 5.1.1).

3.2.5 PortBitVec module

The PortBitVec module is placed within the TCPrx module, similar to how the Trie

module is placed within the IPrx module. Once the TCPrx module has identi�ed the

source and destination port numbers a �ag (portBVInFlag) is raised to the PortBitVec

module and the source and destination port numbers are passed to the PortBitVec module

(on busses portBVInput1 and portBVInput2 respectively). The port numbers are checked

against values speci�ed in the rules and matches are reported in a bit vector in an identical

fashion to that returned from the Trie module. A screenshot of a simulation of this process

is shown in �gure 3.5.

Figure 3.5: A trace output showing the behaviour of the TCPrx and PortBitVec modules

3.2. MODULE DESCRIPTIONS 38

The process whereby port numbers are matched is not as simple as the use of bit masks

to match IP addresses. As seen in the literature the complication arises because while IP

address ranges can typically be described by bit masks port number ranges are typically

within arbitrary numbers that cannot be de�ned by a single bit mask as with an IP

address. The approach taken in this paper to identify the rule pertaining to port numbers

provided very high speed matching but at the expense of resources on the FPGA..

The port numbers speci�ed in the rule set were converted into binary numbers and each

bit was combined with another using AND and OR gates to evaluate to TRUE or FLASE

if the sample number is either greater or less than the port number in the rule set. As

an example consider the number 6 in a domain of 4 bit numbers. Expressing 6 as a 4 bit

binary number one gets 0110. To detect if a test number, t, is greater than 6 one can

evaluate the following expression (where t(3) is the most signi�cant bit of t and t(0) is

the least signi�cant bit of t): t(3) or (not t(3) and t(2) and t(1) and t(0)) where t(x) is

considered TRUE if t(x) is 1 otherwise FALSE if t(x) is 0. This method is scaled up to

accept 16 bit numbers.

The estimated delay from using this method is the sum of the switching time for each

logic gate used in the evaluation of the test number and the complete propagation delay

between each gate. However in practice this method as implemented in this packet �lter

is encoded in the outputs of 4 input LUTs.

Like the Trie module the PortBitVec module is also a generated �le rather than a hard-

coded �le. The Java application that generates the PortBitVec module also reads rules

from a user speci�ed rule �le and parse the rules to locate the values of the port numbers

and the relational operators that applies to the port numbers (equality, less than, greater

than or port range). The java application then inserts the correct expressions within the

PortBitVec design �le. Again, the bene�t of this approach is that someone wishing to

specify a customized rule set need not have knowledge of VHDL programming.

3.2.6 Aggregator module

Since the IPrx and TCPrx modules both report the matches of di�erent components of

the rules in the rule sets at di�erent times and the results of these matches are not implied

to both be valid at the same time an Aggregator module is implemented to aggregate the

results of the IPrx and the TCPrx modules before passing the �nal rule matching results

to the Count module.

3.2. MODULE DESCRIPTIONS 39

The Aggregator module has a single bit input �ag from each of the IPrx and TCPrx

modules (ipFlag and tcpFlag respectively) and an n bit bus (where n is the number of

rules in the rule set) from each of the same modules (ipRules and tcpRules respectively)

that carries the results from the two modules. The Aggregator makes use of a FSM to

control its operation and collating of the rules. This FSM is shown in �gure 3.6.

Figure 3.6: The FSM describing the behaviour of the Aggregator component

The Aggregator module begins in the Wait_for_ip state. When the ipFlag is raised

the Aggregator module stores the value carried on the ipRules bus in an n bit register

(ipRules_reg) and the Aggregator moves to the Wait_for_ports state. When the port-

Flag is raised the contents of the ipRules_reg is AND'ed bit for bit with the value on

the portRules bus. The result is placed on the Aggregator output bus (cntRules) and a

�ag is raised by the Aggregator (cntFlag) to alert other modules that a valid set of match

results is present. The Aggregator then moves to the Answer_back state. On the next

fall of the clock signal into the Aggregator module the Aggregator module moves back to

the Wait_for_ip state in preparation for the next IPrx result. This process is shown in

�gure 3.7.

Figure 3.7: A trace output showing the bahviour of the Aggregator component's output

signals relative to the module's input signals.

3.2. MODULE DESCRIPTIONS 40

3.2.7 Count module

The Count module reads the output from the Aggregator module and increments counters

for all rules matched to a particular packet. When the cntFlag from the Aggregator

module is asserted the Counter module cycles through each bit on the cntRules bus and if

the bit read has the value 1 then a register that stores the number of times a rule has been

match is incremented by one. The Count module reads through each bit on the cntRules

bus instead of just until the �rst bit read is 1 to ensure that all registers are incremented

in the case of multiple rule matches. This process is shown in �gure 3.8.

Figure 3.8: A trace output showing the behaviour of the Count module when updating

the rule counters after a packet has been through the matching process.

In the area marked (a) the packet is seen to match the �rst three rules by the assertion of

the three least signi�cant bits of the bitvec signal. The counters for the �rst three rules

are therefore incremented by 1 each. In the area marked (b) a similar analysis indicates

that rules 1, 2, 3, 6, and 7 were matched by the packet hence the relevant counters are

incremented.

The Count module also reads a q_cnt �ag from the Report module; when the q_cnt �ag is

asserted the Count module also reads a bus (rule_num) which speci�es the particular rule

for which the associated count should be reported back. The Count module then places

the value of the relevant register on a bus (count) to be read by the Report module.

3.2. MODULE DESCRIPTIONS 41

3.2.7.1 Report module

The Report module is responsible for providing the values of the rule counters over a

serial interface on request. This is a process and is captured in the FSM shown in �gure

3.9. The Report module remains in the Init state and rule_num is set to h0 until the

issue_report signal is asserted. The issue_report signal is controlled by a slide switch on

the development board and therefore requires user interaction to be driven high or low.

When the issue_report signal is asserted the query signal to the Count module is asserted,

the value of rule_num is h0 and the Report module transitions to the ReadRule state.

The Report module waits in the ReadRule state for one clock cycle to allow the rule count

for the �rst rule to appear on the rule_cnt bus and then the Report module transitions

to the TransmitFirstByte state, a �ag is raised to the SerialComs component and the

most signi�cant byte is placed on the transmit_byte bus to the SerialComs module. The

Report module then transitions to the FirstByteFinished state to await the completion

of the transmission of the most signi�cant byte via the serial interface.

The completion of transmission is indicated when the SerialComs module asserts the trans-

mit_complete signal. The Report module then transitions to the TransmitSecondByte

state and the start_transmit �ag is raised again. The Report module then transitions

to the SecondByteFinished state to await the completion of the second most signi�cant

byte of the rule count. A similar process is followed for the third and forth bytes of the

count bus and the Report module then transitions to the ReadRule state again to read

the count of the next rule after the rule just transmitted. When this rule's counts are

received from the Count module the Report module transmits it over the serial interface

again as before. This process continues until all the rules have been read from the Count

module and transmitted over the serial interface.

Since this module is controlled through user interaction no signal is asserted upon com-

pletion of this module's task. When all of the rule counts have been transmitted via the

serial interface the Report module transitions from the ForthByteFinished state to the

Finished state until the Report module is asked to issue another report.

With regard to the reporting of rule counts by the �lter three options were available: use

of the onboard 16 character LCD display, encapsulate the counts in an Ethernet frame

and transmit the data over a network or transmit the counts over a serial RS-232 interface

to a connected device (most likely a computer). The author chose to make use of the serial

interface for the sake of simplicity however the other options will be discussed in slightly

more detail in chapter seven.

3.2. MODULE DESCRIPTIONS 42

Figure 3.9: The FSM that captures the behaviour of the Report module when asked to

transmit the rule counts for the �lter rules in the rule set.

Chapter 4

Results

At the time of writing this paper the �lter described in this project had not yet been

downloaded to the FPGA device although the logic in the design had been veri�ed through

the use of ModelSim Starter Edition. This software provided trace outputs similar to the

ones shown in chapter 3 which were used in the design process to debug faults in the

designs as they were recognised. The lack of results that could give a measure of the

performance of a functioning �lter as described in this paper is unfortunate; hence this

section is therefore a discussion of the result of the implementation process to date and

the reasons why the implementation of the �lter did not progress beyond design and

functional veri�cation.

Unfortunately the veri�cation of the logic of a design in ModelSim does not imply that

the design can successfully be downloaded to the FPGA device or that the design will

operate as intended. This was realised while implementing the Filter design described

above in two primary ways.

Firstly to simulate the functional behaviour of a design the simulation tool must be able

to compile the source design �les of the design which requires that the usual compiler

requirements be met (correct syntax etc.); however, implementing a design on an FPGA

device once the design has been described (by using VHDL design �les in this project) is

a process during which many sub-processes occur.

One of these sub-processes is synthesis of the design. According to the FPGA enthusiast

website www.FPGA4Fun.com [16] synthesis of a design creates a netlist of the design

which is a description of how basic discrete logic components are connected together.

This process implicitly requires that any signals described in the design can be physically

43

44

realized using discrete logic circuitry such as logic gates and �ip-�ops. This is a require-

ment that need not be met during simulation and in the case of this project required the

re-design of large portions of the design to accommodate the synthesis requirements �

particularly the description of synchronous components such as the states of �nite state

machine's used throughout the design. This re-design extended the time required to fully

design the �lter and was a contributing factor in the inability to fully implement the �lter.

The second factor that had an adverse e�ect on the performance of the design was the

e�ect of physical limitations on signal delays within the device particularly the problem of

clock skew. Clock skew is the di�erence in time between the arrival of a clock signal at one

component and the arrival of the same clock signal at another component further along

the path of the clock [33]. The clock skew of a clock signal causes a de-synchronisation

of signals that should be synchronised and this has obvious implications in the validity of

data passed between modules and the �lter design cannot hence be expected to operate

correctly if clock skew is unintentionally present in the �nal design.

The reason for the occurrence of clock skew within the �nal design downloaded to the

FPGA device is due to the result of the translate, map and place and route sub-processes

within the implementation process. During these processes the netlist created during the

synthesise sub-process is used to create a �le to be downloaded to the FPGA device that

speci�es the con�guration of the device to enable it to perform as described in the design

�les. It is during these sub-processes that constraints upon the performance of the design

(such as timing speci�cations of clock signals and the physical pins on the FPGA device

to which signals should be connected) are evaluated and the results of the evaluations are

reported back to the user.

It was during these sub-processes that the design software reported that excessive skew

may be present in some signals. Again this was due to a lack in understanding of the

processes by which VHDL design �les are used to generate the �nal con�guration bit �le;

during this process signals used as clocks were mapped to general routing paths within

the device and not the dedicated clock routes within the design. The debugging process

that ultimately led this conclusion and its solution was rather lengthy and was therefore a

second contributing factor to the time required to fully design and implement the module.

While the above two issues describe factors responsible for the �lter not being fully realised

it is pertinent to also discuss the method of retaining the number of times rules have been

matched particularly since a 512MB DDR2 SDRAM chip is available on the Spartan-3AN

development board but did not feature in the �lter design. The documentation for the

45

development board [32] suggests that instead of the application developer creating the

interface to the RAM chip the user should instead use the Memory Interface Generator

(MIG) tool developed by Xilinx to generate an interface to the RAM chip.

The MIG user guide [31] states that the MIG tool outputs Verilog and VHDL design �les

as well as all other �les required to successfully implement an interface to the speci�ed

RAM chip with all timing requirements met to ensure proper behaviour of the RAM

memory. A top-level module is also created by MIG which is the simpli�ed interface to be

implemented by the application developer. It was intended that the �lter in this design

make use of the DDR2 SDRAM available on the development board however the author

of this paper was unable to implement the MIG generated interface.

While the MIG tool is intended to output an interface in both Verilog and VHDL the

version of MIG used in this project (MIG v3.0) outputs only Verilog �les for the speci�c

DDR2 SDRAM chip used on the Spartan-3AN board (MT47H32M16 developed by Micron

Technology). To output VHDL �les a more up-to-date version of MIG would be required

which in turn requires the use of a new version of the Xilinx ISE Design Suite which

would require a new software license. Due to the short amount of time left to implement

the �lter this option was abandoned.

However it is possible to declare and instantiate Verilog design �les within VHDL design

�les and vice versa. This however led to problems when trying to synthesize the design;

the Xilinx ISE seemed to insist on locating the VHDL based design �les instead of the

Verilog ones and this issue could not be resolved. It was for this reason that the rule

count storage method described above (the use of registers) was implemented.

It is for reasons described above that the design resulted in that described in chapter 3.

Despite not being able to fully implement the �lter design on the FPGA device the

synthesis process does provide a report on various aspects of the FPGA device utilization

and one of these aspects is the number of 4 input LUTs used to implement the logic of

the design. This feedback from the synthesis process enables one to estimate the cost of

a rule in terms of the number of 4 input LUTs required to implement the matching logic.

The synthesis process was run twice; �rst with all rules set their worst case forms (full

32 bit bit masks for both IP addresses and ranges speci�ed for port numbers) and the

number of LUTs required for synthesis was recorded. Then the synthesis process was run

again but this time the rules were set to their best case forms (0 bit bit masks for the

IP addresses and no port number matching performed) and the number of LUTs needed

were again recorded. The results are reported in Table 4.1.

46

To conclude, various aspects prevented the design of the packet �lter being implemented

on the development board. These were largely due to the inexperience of the author in a

new language in a new �eld. However if the above mention problems could be overcome

the design itself does not seem to present any forseeable �aws.

Table 4.1: LUT resource usage for best and worst case rule forms (ten rules)

Number of LUTs required Percentage of total LUTs available

Best case 765 6%

Worst case 1108 9%

Chapter 5

Discussion

The �nal design described in chapter 3 is severely limited in terms of the number of

rules that are stored because an interface to the on board DDR2 SDRAM chip could

not be implemented and this limited the number of rule counts that could be stored in

a practical manner. However, to provide evidence that FPGAs are a viable platform on

which to base packet �lters an analysis of the rate at which packets can be processed is

a more important measure of a packet �lter's capabilities than the ability to record the

number rule matches as any actions to take place following a rule match can be o�oaded

to another system; it is the speci�c task of matching packets to rules that needs to be

optimised to avoid the pitfalls of an overwhelmed �lter described in the literature. Hence

the use of only 10 rules as a rule set for this packet �lter need not be a concern.

What may be of some concern to the reader is that one may be inclined to assume that

the time taken to match rules increases as the number of rules increases. Observing the

design �les of the protocol and IP address matching component and the port numbers'

matching component one can see that within each of the Trie and PortBitVec modules

the �elds are matched against the values speci�ed in each of the di�erent rules in parallel

i.e. the IP �elds are checked against rule 1 at the same time as they are checked against

rule 2 and at the same time as against all of the other rules and a similar parallelism

exists in the PortBitVec module. Hence an increase in the number of rules should not

have an e�ect on the time taken for the packet to be compared to all the rules except to

introduce longer path delays between the IPrx module and its internal Trie module and

similarly for the TCPrx module and its internal PortBitVec module.

As is often the case this very appealing performance with regard to time incurs a hefty

penalty with regard to the number of FPGA resources required however the results ob-

47

48

tained from the study of best case vs worse case LUT requirements are promising. In the

worst case rule speci�cations the rules were crafted speci�cally to require as many logic

components as possible and hence as many LUTs as possible to implement these compo-

nents but in the best case rule speci�cations all rule outputs were tied to 1 and hence the

number of LUTs required was minimal. As can be observed from table 4-1 roughly 350

LUTs, or around 4% of available LUTs, are required to implement ten rules with worst

case forms. Using 6% of available LUTs for other logic in the design leaves 94% of LUTs

available for rule speci�cation but as the number of rules increases the number of other

support LUTs, besides those directly related to matching rules, can also be expected to

increase. So if one were to allow a conservative estimate of 70% of LUTs available to direct

rule matching logic with the remaining 30% dedicated to other logic in the application

and supporting logic to implement the design a user could conceivably specify 175 rules

of the worst case form in the �lter rule set before running out of FPGA resources.

Chapter 6

Conclusion

In conclusion, this paper alone demonstrates that while the packet �lter described within

this paper was never fully realised it is at least possible to describe the logic required

to implement a packet �lter operating on the basic 5-tple of protocol number, sour and

destination IP addresses and source and destination port numbers and this paper, through

the use of the VHDL hardware description language and the Xilinx proprietary synthesis

software, also demonstrates that the logic for a packet �lter can be realised in a circuit

of discrete logic components. Beyond this paper there is an extensive array of literature

supporting the use of FPGAs in networking tasks and technologies with the performance

of the described systems advancing continuously as FPGA and FPGA related technologies

continue to improve.

The gaol of this project was to implement a packet �lter that was capable of storing

counters that kept track of how many times packets matched certain rules and this process

was successfuly simulated. The values of the counters then had to be transmitted via a

serial interface upon request by the user and this process was successfully implemented

on the FPGA device.

The aim of these goals was to demonstrate the vaibility of using FPGAs as packet �lters

with the successful simulation of the design and the extensive literature supporting this

claim it is concluded that FPGAs are indeed a viable platform on which to implement

packet �lters provided that the necessary experience is present within the application

designer and developer.

49

6.1. FUTURE EXTENSIONS 50

6.1 Future Extensions

Due to the design described within this paper being very simplistic in its approach there

is much scope for extension of the capabilities of the �lter and a few of these possibilities

are discussed in the following section 6.1

The new programming environment presented by FPGAs when compared to more conven-

tional programming environments requires much time spent learning the new techniques

relevant to coding in VHDL for FPGAs, more than the expected time frame of this project.

As a result many attractive aspects of this project that formed part of the concept of the

�nal packet �ltering system were not realised. These aspects will be discussed in this

chapter to provide the reader with an idea of the best performing �lter that can be im-

plemented on the development board used in this project and of what other technologies

are available for use in FPGA based packet �lters in general.

6.1.1 Expanding �lter capabilities

Using the 512MB DDR2 SDRAM As stated the development kit has 512MB DDR2

SDRAM chip and the implementation of an interface to this memory has been successfully

designed and veri�ed by Xilinx (sp3anddr2}. The incorporation of this memory into the

�lter design would allow the size of rule sets to be greatly expanded and their associated

rule counters to be stored too providing the user with the option of specifying many more

rules for the �lter. Since the interface is capable of operating at DDR2-400 speci�cations

it is envisaged that the impact on maximum �lter speed will be acceptable to still allow

the �lter to operate at line speeds of 100Mbps or less. However the absolute maximum line

speed at which the FPGA will be able to operate e�ectively can be expected to decrease

as the period of RX_CLK begins to approximate that of the DDR2-400 instruction cycle.

Ultimately the balance between speed and size of the �lter will have to be adjusted to

suit one's needs but the implementation of the DDR2-400 interface would most certainly

be a great bene�t when operating at the speeds the development kit is capable of.

Adapting the Filter to Other Protocols Naturally the variety of transport level

protocols that the �lter can process is important in order for the �lter to still maintain

e�ectiveness. As stated in the introductory chapter of this paper the goal of the �lter was

to count how many times packets collected using a network telescope matched certain

6.1. FUTURE EXTENSIONS 51

rules and it makes sense for the �lter to be able to match datagrams that are not only

TCP datagrams.

While di�erent transport level protocols posses di�erent structures as shown in chap-

ter 3 the relevant �elds of these protocols in this �lter are the source and destination

port numbers which are always 16 bits each and may occur at di�erent o�sets within a

datagram. Leveraging the knowledge of transport protocol standards it was intended for

another Java application to be written that, when parsing the rule �le for the �lter, notes

each di�erent transport protocol and generates a separate *rx module for each transport

protocol (where * is the transport protocol e.g. TCPrx in the described design but not

IPrx since IP is a network level protocol). These modules would be identical except for

the byte counter values at which the datagram bytes are stored; these values would be

such that the port numbers are retained within each *rx module. Since the protocols are

mutually exclusive the datagram_present and transport_prot signals visible in �gure 13

would be routed to each *rx module. The datagram_present module would enable all

*rx modules but a module would only operate if the transport_prot signal carried the

transport protocol number for that speci�c module. Each module would instantiate the

same PortBitVec module to obtain the results of the port number component of the �lter

rules.

Such an extension to the �lter design described above is vital to ensure that the �lter is

useful beyond �ltering any datagrams besides TCP.

6.1.2 Means of reporting rule counts

Two other methods of reporting the rule counts were looked at but discarded in favour of

using the serial interface on the development board. These options are discussed below.

Ethernet Frames The current design of the �lter requires that the �lter be connected

to some device (such as a computer) capable of processing the data output over the serial

interface in the manner required by the user. This has the obvious drawback of localising

the operation of the �lter to a single location where the user must be present at the

other end of the serial cable to accept the data from the �lter. A more versatile option

is to report back the rule counts stored within the �lter over the network on which the

�lter resides as yet another Ethernet encapsulated IP packet. UDP would be an adequate

transport protocol to use in this process and so the implementation of a UDP/IP/Ethernet

6.1. FUTURE EXTENSIONS 52

stack within the �lter design as a part of the report back process of the �lter is attractive.

However the most signi�cant drawback of implementing this approach on the speci�c

development board used in this project is with only one Ethernet connection available to

the board the rule counts would either have to be issued after all Ethernet frames have

been received (which may not be known) or the reception of Ethernet frames would have

to be synchronised to the process of transmitting the rule counts stored on the device,

this would hamper the overall performance time of the �lter has it would have to stop

receiving frames at some point to allow transmission of the rule counts.

LCD Screen The development board also has an on board a 16 character LCD screen

to which data can be written or read from. For the purpose of merely counting the number

of various rule matches outputting of data to the LCD screen would be su�cient to achieve

this task with the selection of which rules are being displayed at any one time controlled

through the use of any one of the boards various switches, buttons or the rotary dial.

However, due to the speci�c operation of the LCD screen this approach would require

that the 32 bit rule count be converted to a sequence of ASCII characters representing

the value of the 32 bit binary number, a rather tedious process.

Bibliography

[1] Altera, 2010. Altera Corporation webpage.

[2] Zachary K. Baker and Viktor K. Prasanna. Time and area e�cient pattern matching

on fpgas. In International Symposium on Field Programmable Gate Arrays, pages

223 � 232, 2004.

[3] Peter Bellows, Jaroslav Flidr, Tom Lehman, Brian Schott, and Keith D. Underwood.

Grip: A recon�gurable architecture for host-based gigabit-rate packet processing.

In In: Proc. of the IEEE Symposium on Field-Programmable Custom Computing

Machines, pages 121�130. IEEE Computer Society Press, 2002.

[4] Stephen Brown and Jonathan Rose. Architecture of fpgas and cplds: A tutorial.

IEEE Design and Test of Computers, 1996.

[5] Young H. Cho and William H Mangione-Smith. Deep network packet �lter design

for recon�gurable devices. In ACM Transactions on Embedded Computing Systems,

2008.

[6] Young H. Cho, Shiva Navab, and William H Mangione-Smith. Specialised hardware

for deep network packet �ltering. In International Conference on Field Programmable

Logic and Applications. The University of California, 2002.

[7] Pawel Chodowiec and Kris Gaj. Very compact fpga implementation of the aes al-

gorithm. In 5th International Workshop on Cryptographic Hardware and Embedded

Systems, volume 2779, pages 319�333, 2003.

[8] Adam Covington, John Lockwood Glen Gibb, and Nick McKeown. A packet gener-

ator on the netfpga platform.

[9] Gregory Ray Goslin. A guide to using �eld programmable gate arrays (fpgas) for

application-speci�c digital signal processing performance, 1995. Xilinx Incorporated.

53

BIBLIOGRAPHY 54

[10] Scott Hauck. The roles of fpgas in reprogrammable systems. In Proceedings of the

IEEE, volume 86, pages 615�639, April 1998.

[11] Source�re Inc. webpage.

[12] Ji Li, Haiyang Liu, and Karen Sollins. Scalable packet classi�cation using bit vector

aggregating and folding. Technical report, MIT-LCS, 2003.

[13] David Moore, Colleen Shannon, Geo�ery M. Voelker, and Stefan Savage. Network

telescopes: Technical report. Technical report, San Diego Supercomputer Center,

University of California and Computer Science and Engineering Department, Uni-

versity of California, 2004.

[14] James Moscola, John Lockwood, Ronald P. Loui, and Michael Pachos. Implementa-

tion of a content-scanning module for an internet �rewall. In Proceedings of IEEE

Workshop on FPGAs for Custom Computing Machines, 2003.

[15] NetFPGA, 2010.

[16] Jean P. Nicolle, 2007.

[17] Alastair Nottingham and Barry Irwin. Gpu packet classi�cation using opencl: A

consideration of viable classi�cation methods. In Proceedings of the 2009 Annual

Research Conference of the South African Institute of Computer Scientists and In-

formation Technologists, pages 160 � 169, 2009.

[18] Kaushik Ravindran, Nadathur Satish, Yujia Jin, and Kurt Keutzer. An fpga-based

soft multiprocessor system for ipv4 packet forwarding. In In Proc. 15th International

Conference on Field Programmable Logic and Applications (FPL-05, page 487492,

2005.

[19] Mireille Regnier. Lecture Notes in Computer Science, chapter Knuth-Morris-Pratt

algorithm: An analysis, pages 431 � 444. Springer Berlin / Heidelberg, 1989.

[20] Martin Roesch and Chris Green. SNORT Users Manual 2.8.6. The Snort Project.

[21] Haoyu Song and John Lockwood. E�cient packet classi�cation for network intru-

sion detection using fpga. In International Symposium on Field-Programmable Gate

Arrays, 2005.

[22] Ioannis Sourdis and Dionisios Pnevmatikatos. Fast, Large-Scale String Match for a

10Gbps FPGA-Based Network Intrusion Detection System. Springer Berlin / Heidel-

berg, 2003.

BIBLIOGRAPHY 55

[23] V. Srinivasan, S. Suri, and G. Varghese. Packet classi�cation using tuple space

search. In Proceedings of the conference on Applications, technologies, architectures,

and protocols for computer communication, 1999.

[24] V. Srinivasan, G. Vargheset, S. Suri, and M. Waldvogelg. Fast and scalable layer 4

switching. In ACM SIGCOMM Computer Communication Review, 1998.

[25] Rishard Stevens. TCP/IP Illustrated, volume One. Addison Wesley Longman, Inc.,

thirteen edition, 1999.

[26] David E. Taylor. Survey and taxonomy of packet classi�cation techniques. ACM

Computing Surveys, 2005.

[27] Jean-Pierre van Riel and Barry Irwin. Identifying and investigating intrusive scanning

patterns by visualizing network telescope tra�c in a 3-d scatter plot. In Proceedings

of 6th Annual Information Security Conference, 2006.

[28] Nicholas Weaver. The Shunt: An FPGA-based accelerator for network intrusion

prevention, pages 199�206. ACM Press, 2007.

[29] Xilinx. The Programmable Logic Databook 2000.

[30] Xilinx. Xilinx Content-Addressable Memory v6.1 Product Speci�cation, 2008.

[31] Xilinx Corporation. Memory Interface Solutions User Guide.

[32] Xilinx Corporation. Spartan-3A/3AN FPGA Starter Kit Board User Guide, v1.1

edition, 2008.

[33] Xilinx.com. clock skew (defn). website, 2005.

[34] Cho H. Young, Shiva Navab, and William H. Mangione-Smith. Specialized hardware

for deep network packet �ltering. In Proceedings of 12th International Conference on

Field Programmable Logic and Applications, 2002.

[35] Jihan Zhu and Peter Sutton. Fpga implementations of neural networks - a survey

of a decade of progress. In Proceedings of the 13th Annual Conference on Field

Programmable Logic and Applications, pages 1062�1066, 2003.

