
Fast and Scalable Layer Four Switching

V. Srinivasan” G. Vargheset S. SuriS M. Waldvogelg

Abstract

In Layer Four switching, the route and resources allocated
to a packet are determined by the destination address as well
as other header fields of the packet such as source address,
TCP and UDP port numbers. Layer Four switching unifies
firewall processing, RSVP style resource reservation filters,
QoS Routing, and normal unicast and multicast forwarding
into a single framework. In this framework, the forwarding
database of a router consists of a potentially large number
of filters on key header fields. A given packet header can
match multiple filters, so each filter is given a cost, and the
packet is forwarded using the least cost matching filter.

In this paper, we describe two new algorithms for solv-
ing the least cost matching filter problem at high speeds.
Our first algorithm is based on a grid-of-tries construction
and works optimally for processing filters consisting of two
prefix fields (such as destination-source filters) using linear
space. Our second algorithm, cross-producting, provides
fast lookup times for arbitrary filters but potentially requires
large storage. We describe a combination scheme that com-
bines the advantages of both schemes. The combination
scheme can be optimized to handle pure destination prefix
filters in 4 memory accesses, destination-source filters in 8
memory accesses worst case, and all other filters in 11 mem-
ory accesses in the typical case.

1 Introduction

With everyone building Web Sites, Internet usage has been
expanding at a rate more commonly associated with nuclear
reactions. Internet traffic is exploding because of a growing
number of users as well as a growing demand for bandwidth
intensive data. Multimedia applications, for instance, can

‘Computer Science Department, Washington University, St.
Louis. Research supported in part by NSF Grant NCR-9628145.

‘Computer Science Department, Washington University, St.
Louis. Research supported in part by NSF Grant NCR-9628145 and
an ONR Young Investigator Award.

*Computer Saence Department, Washington University, St.
Louis. Research supported in part by NSF Grant NCR-9628145

5 Computer Saence Department, ETH, Zurich.

Permission to make di@el or herd copies of all or pert of this work for
personal or classroom use is granted without fee provided that
copies are not made or dtstributed for proflt or commercial advan-
tage and that copies beer this notice end the full citation on the fwst page.
To copy otherwise. to republish. to post on fevers or to
redistribute to 1181s. requires prior specific permission and/or e fee.
SIGCOMM ‘98 Vsncouvar, B.C.
0 1998 ACM 1.58113-W3-1198/ooo8...~5.00

easily consume megabytes of bandwidth. To keep up with
increased traffic, link speeds in the Internet core have been
increased to 622 Mbps, and a number of vendors are provid-
ing faster routers.

A traditional router performs two major tasks in for-
warding a packet: looking up the packet’s destination ad-
dress in the router database, and switching the packet from
an incoming link to one of the outgoing links. With recent
advances [18, 301, the task of switching is well understood,
and most vendors use fast buses or crossbar switches. Sev-
eral new algorithms have been developed recently for ad-
dress lookup as well [9, 31, 22, 271. Thus it would appear
that there is no inherent impediment to building Gigabit
routers for traditional data forwarding in the Internet.

Increasingly, however, users are demanding, and some
router vendors are providing, a more discriminating form of
router forwarding. To quote John McQuillan [19]:

Routing has traditionally been based solely on destination
host numbers. In the future it will also be based on source
host or even source users, as well as destination URLs (uni-
versal resource locators) and specific business policies
Thus, in the future, you may be sent on one path when you
casually browse the Web for CNN headlines. And you may
be routed an entirely different way when you go to your cor-
porate Web site to enter monthly sales figlu-es, even though
the two sites might be hosted by the same facility at the
same location. . An order entry form may get very low la-
tency, while other sections get normal service. And then
there are Web sites comprised of different servers in differ-
ent locations. Future routers and switches will have to use
class of service and QoS to determine the paths to particular
Web pages for particular end-users. All this requires the use
of layers 4, 5, and above.

This new vision of forwarding is called Layer 4 I;brutard-
ing because routing decisions can be based on headers avail-
able at Layer 4 or higher in the OS1 architecture. Layer 4
Switching offers increased flexibility: it gives a router the
capability to block traffic from a dangerous external site,
to reserve bandwidth for traffic between two company sites,
and to give preferential treatment to one kind of traffic (e.g.,
online database transactions) over other kinds (e.g., Web
browsing). Layer 4 switching is sometimes referred to in the
vendor literature [28] by the phrase “service differentiation”.
Traditional routers do not provide service differentiation be-
cause they treat all traffic going to a particular Internet ad-
dress in the same way. Layer 4 Switching allows service dif-
ferentiation because the router can distinguish traffic based
on origin (source address) and application type (e.g., web

191

traffic vs. file transfer).
Layer 4 Switching, however, does not come without some

difficulties. First, a change in higher layer headers will re-
quire reengineering the routers, which is why routers have
traditionally used only Layer 3 headers. Second, when data
is encrypted for security, it, is not clear how routers can get
access to higher layer headers.

Despite these difficulties, several variants of the Layer 4
switching have already evolved in the industry. First, many
routers implement firewalls [6] at trust boundaries, such as
the entry and exit points of a corporate network. A firewall
database consists of a series of packet filters that implement
secinity policies. A typical policy may be to allow remote
login from within the corporation, but to disallow it from
outside the corporation. Second, the need for predictable
and guaranteed service has lead to proposals for reservation
protocols like RSVP [32] that reserve bandwidth between a
source and a destination. Third, the cries for routing based
on traffic type have become more strident recently-for in-
stance, the need to route web traffic between Site 1 and Site
2 on say Route A and other traffic on say Route B. Figure 1
illustrates some of these examples.

d Subnet X

Database at Router R

D Subnet Y

Figure 1: Example of filters that provide traffic sensitive routing. a firewalt
rule, and reswrce reservation. The first filter routes video traffic from Sl to
D via Ll; not shown is the default routing to D which is via L2. The second
filter blocks traffic from an experimental site 52 from accidentally leaving the
site. The third filter reserves 50 Mbps of traffic from an internal network X
to an external network Y, implemented perhaps by forwarding such traffic to
a special outbound queue that receives special scheduling guarantees; here X
and Y are prefixes.

Once users have gotten used to the flexibility and fea-
tures provided by firewalls, traffic reservations, and QoS
routing, it is hard to believe that future routers can ignore
these issues. The genie appears Lo be out of the bottle, or
the camel has entered the tent, depending on one’s point
of view. On the other hand, it seems clear that the ad
hoc solutions currently being deployed are not the best, and
cleaner and more general techniques are possible. For ex-
ample, a cleaner solution to the traffic sensitive routing and
reservation problem would be to push some form of “traffic
classifier” into the routing header to determine application
requirements without inspecting higher layer headers’. But
whatever the final solutions will be, it seems clear that fu-
ture routers will need to forward at least some traffic based
on a combination of destination address, source address and

‘We are grateful to Craig Partridge and John Wrocklawski for
sharing theu Ideas and opinions with us.

some other classifier fields, whether they are in the routing
(Layer 3) or higher layer (Layers 4 and up) headers.

In this paper, we take a neutral stance on the issue of
choosing which combination of fields should be used for a
particular function, and even on the issue of deciding which
functions are most useful. Instead, we concentrate on a gen-
eral problem where a router forwarding database consists of
a number of filters, each of which is a conjunction of either
exact, range, or prefix matches on a set of packet fields. We
describe a family of efficient algorithms for finding the best
matching filter for a given packet, which then determines
the packet’s route, resource allocation and access rights. We
are especially concerned with finding algorithms that are ef-
Jicient (i.e., implementable at Gigabit speeds), but are also
scalable to large numbers of filters (say, lOOK filters) with
reasonable memory costs.

Firewalls today contribute only a few (lo-100 typically)
filters. However, if we consider that backbone routers [20]
have 40,000 prefixes, and if we qualify each destination pre-
fix with even a few port numbers (e.g., for QoS routing) or
source prefixes (e.g., for resource reservation between sites
in a Virtual Private Network), it is not hard to imagine the
need for several hundred thousand filters. Today, even fire-
wall processing with lo-100 filters is generally slow because
of linear search through the filter set, but is considered an
acceptable price to pay for “security”. Thus the problem
of finding the best matching filter for up to 1OOK filters at
Gigabit speeds is an important challenge.

The rest of the paper is organized as follows. We formu-
late the best matching filter problem precisely in Section 2.
In Section 3, we briefly discuss related work. In Section 4,
we show how to replace range matches by prefix matches.
In Section 5, we describe our first new scheme, the grid-
of-tries. Our second scheme, cross-producting, is described
in Section 6. We discuss lower bounds that show the diffi-
culty of the general filter problem in Section 7. We present
a scheme that combines the best features of grid-of-tries and
cross-producting in Section 8. Finally, we discuss implemen-
tation results in Section 9, and conclude in Section 10.

2 The Best Matching Filter Problem

‘Traditionally, the rules for classifying a message are called
filters, (or rules in firewall terminology) and the Layer 4
Switching problem is to determine the lowest cost matching
Filter for each incoming message at a router.

We assume that the information relevant to a lookup is
contained in IC distinct header fields in each message. These
header fields are denoted H[l], H[2], . . . , H[IC], where each
field is a string of bits. For instance, the relevant fields for an
IPv4 packet could be the Destination Address (32 bits), the
Source Address (32 bits), the Protocol Field (8 bits), the
Destination Port (16 bits), the Source Port (16 bits), and
TCP flags (8 bits). The number of relevant TCP flags is
limited, and so we prefer to combine the protocol and TCP
hags into one field-for example, we can use TCP-ACK to
mean a TCP packet with the ACK bit set.2 Other relevant
TCP flags can be represented similarly; UDP packets are
represented by H[3] = UDP.

Thus, the combination (0, S, TCP-ACK ,63,125), de-
notes the header of an IP packet with destination D, source

‘TCP flags are important for packet filtering because the first
packet in a connection does not have the ACK bit set while the oth-
ers do. This allows a simple rule to block TCP connections initi-
ated from the outside while allowing responses to internally initiated
connections.

192

S, protocol TCP, destination port 63, source port 125, and
the ACK bit set.

The filter database of a Layer 4 Router consists of a fi-
nite set of filters, F1, F-J FN. Each filter is a combination
of 11~ values, one for each header field. Each field in a filter is
allowed three kinds of matches:3 exact match, prefix match,
or range match. In an exact match, the header field of the
packet should exactly match the filter field-for instance,
this is useful for protocol and flag fields. In a prefix match,
the filter field should be a prefix of the header field-this
could be useful for blocking access from a certain subnet-
work. In a range match, the header values should lie in the
range specified by the filter-this can be useful for specifying
port Itumber ranges.

Each filter F, has an associated directive act,, which
specifies how to forward the packet matching this filter. The
directive specifies if the packet should be blocked. If the
packet, is to be forwarded, the directive specifies the out-
going link to which the packet is sent, and perhaps also a
queue within that link if the message belongs to a flow with
bandwidth guarantees.

We say that a packet P matches a filter F if each field
of P matches the corresponding field of F-the match type
is implicit in the specification of the field. For instance, if
the destination field is specified as lOlO*, then it requires a
prefix match; if the protocol field is UDP, then it requires
an exact match; if the port field is a range, such as 1024-
1100, then it requires a range match. For instance, let F =
(lOlO*, *, TCP, 1024-1080, *) be a filter, with act = block.
Then, a packet with header (10101.. . 111, 11110.. .OOO,
TCP, 1050, 3) matches F, and is therefore blocked. The
packet (10110...000, 11110...000, TCP, 80, 3), on the
other hand, doesn’t match F.

Since a packet may match multiple filters in the database,
we associate a cost for each filter to determine an unambigu-
ous match. So each filter F in the database is associated
with a non-negative number, cost(F), and our goal is to find
the filter with the least cost matching a packet’s header.
Our cost function generalizes the implicit precedence rules
that are often used in practice to choose between multiple
matching filters. In firewall applications, for instance, rules
or filters are placed in the database in a specific linear order,
where each filter takes precedence over a subsequent filter.
Thus, the goal there is to find the first matching filter. Of
course, we can get the same effect in our scheme, by making
cost(F) equal the position number of F in the database.

As an example of a filter database, consider the firewall
database [6] shown in Figure 2, where a screened subnet
configuration is assumed. There is a so-called bastion host
M within the company that mediates all access to and from
the external world. A4 serves as the mail gateway and also
provides external name server access. TI, TO are Network
Time Protocol (NTP) sources, where TI is internal to the
company and TO is external. S is the address of the sec-
ondary name server which is external to the company. All
addresses of machines within the company’s network start,
with t,he CIDR prefix Net. Thus M and TZ both match the
prefix Net.

As an example, consider a packet sent, to M from S with
UDP destination port equal to 53. This packet matches
Filters 2, 3, and 8, but must be allowed through because
the first matching filter is Filter 2.

31t is possible to extend the type of matches for greater flexibility;
we illustrate our examples using these three most common types.

* 2s
* 53

s 53
* 23

TO 123

Net *

* I

* 1

*
*
I

123
*

*

* allow inbound mail

lJDP allow DNS BCCeEE

* secondary access

* incoming telnet

UDP NW time info
* outgoing packets

Figure 2: Sample firewall database “for a small company” as described in

the book by Cheswick and Bellovin [6]. The block flags are not shown in the
figure; the first 7 filters have block = false (i.e., allow) and the last filter
has block = true (i.e., block).

3 Related Work

There does not appear to be any work directly related to
fast filter processing. Packet filters for demultiplexing have
been used for some time (for instance, see [l, 17, ll]), but
they solve a somewhat different problem. Filters specify dif-
ferent matching rules, allow wildcards and address ranges in
arbitrary fields, and require that we return the first match-
ing filter. The IP address lookup problem is the one most
closely related to our problem; however, the IP lookup prob-
lem is simpler than and a special case of the filter problem.
Our cross-producting scheme uses best matching prefix as a
building block for packet filtering.

An unpublished paper by Paul Tsuchiya [29] describes
a data structure called Cecilia tries for dealing with non-
contiguous IP net masks. Cecilia tries can be generalized to
what we call set pruning trees, and can be used for Layer
4 switching [7]. Unfortunately, the scheme suffers from a
memory explosion, which makes it impractical when the fil-
ter database size becomes large. Figure 5 shows an example
for which Tsuchiya’s scheme, as well as many other simple
methods, have exponential memory blowup. In Section 5.1
we describe the basic idea behind set pruning trees.

Several existing firewall implementations do a linear search
of the database, and keep track of the best matching filter.
Some implementations use caching to improve performance-
they cache full packet headers to speed up the processing of
future lookups. Now the cache hit rate of caching full IP
addresses in routers is at most 80--90X [23, 211; cache hit
rates are likely to be much worse for caching full headers.
Incurring a linear search cost to search through 100,000 fil-
ters is a bottleneck even if it occurs on only 10 to 20% of
the packets.

The least cost matching filter can be thought of as a
special case of a very general multidimensional searching
problem. Several general solutions exist for the problem.
111 particular, each I(-field filter can be thought of as a I<-
dimensional rectangular box, and each packet header can be
thought of as a point in the I<-dimensional space. The least
cost falter matching problem is to find the least cost box con-
taining the header point. A general result in Computational
Geometry offers a data structure requiring O(N(log N)“-‘)
space, and search time O((log N)“-‘), where the logarithms
are to the base 2 (for instance, see Section 2.3 in [24]). Un-
fortunately, the worst-case search and memory costs of this
data structure are infeasible, even for modest values of N
and I<. For instance, when N = 10,000 and IC = 4, the
worst-case search cost is at least 133 = 2197 and the mem-
ory cost is 2197N.

193

A recent approach to Layer 4 switching is described in
[15]. We have been unable to determine the details of this
scheme. It appears to implement multi-dimensional range
matching in hardware.

Another possible technique is to generalize binary search
by using quad-tree like construction in higher dimensions.
(See, for instance, [25].) Consider, for instance, destination-
source filters, which correspond to a two-dimensional search.
A Jilter F = (0, S) can be mapped to a quad-tree cell (i, j)
if 1) is i bits long and S is j bits long. Now, we can try to do
a binary search by first matching the packet with the filters
in the qua&tree cell (w/2, W/2), where W is the maximum
bit length of any destination or source prefix. The problem
is that the probe outcome (fail or match) only eliminates
on,: quadrant of the search space, and requires three recur-
sive calls (not, one, as in 1 dimension) to finish the search,
which leads to a large search time. One possible way to
avoid making three recursive calls is to precompute future
matches using markers, but, that leads to an infeasible mem-
ory explosion of 2 w’2 . We have also shown a lower bound
on hashing schemes like [31] to show that they generalize
poorly to multiple dimensions.

In summary, we believe that all existing methods lead
to eit,her a large blowup in memory or lookup time for the
least cost filter problem.

4 Converting address ranges to prefixes

A filter field is sometimes specified as a range. A common
example is a range of port numbers; for instance, a firewall
filter may require that the source port be greater than 1023.
An arbitrary range can be converted into a union of prefix
ranges, where a prefix range is one that can be expressed
by a prefix. For instance, in a 4-bit field, the prefix 10*
expresses the range [1000, loll] = [S, 111.

Suppose we want to convert an arbitrary range X that
lies within an enclosing binary range [0, 2k]. Define an an-
chored range as one that has at least one endpoint at the
end of the enclosing range. Then, the arbitrary range X
can be split into at most two anchored ranges that lie within
[0, 2k-’ -I] and [2k-1, a”]. Each anchored range can be split
into a logarithmic number of prefix ranges by constantly
halving the range-at each stage, the halving contributes at
most one prefix range. The net result is that we can repre-
sent an arbitrary subrange of [0,2”] with at most 2k prefix
ranges. As an example, with 1Bbit port numbers the range
5 1023 can be expressed using the prefix range OOOOOO*. On
the other hand, the range > 1023 can be expressed with 6
prefix ranges OOOOOl*, OOOOl* OOOl*, OOl*, Ol*, and l*.

Thus, for the rest of the paper, we assume that each filter
field is a prefix.

5 Grid-of-tries

Our first scheme is based on tries. In its simplest form, a
trie is a binary branching tree, with each branch labeled 0
or 1. The prefix associated with a node u is the concatena-
tion of all the bits from the root to the node u. In Figure 4,
for instance, the leftmost node in the Dest-Trie has prefix
value 00; the node on the right has value 10. Our basic
data structure, called a grid-of-tries, is designed to handle
two-dimensional filters, such as destination-source pairs. We
believe this is a significant algorithm in its own right be-
cause large backbone routers may have a large number of
destination-source filters to handle virtual private networks
and multicast, forwarding.

The grid-of-tries can be extended, albeit with some loss
of efficiency, to handle filters on other fields such as port
numbers. This is described in Section 5.5. We start by
explaining the basic two dimensional data structure using
an example database of 7 destination-source filters, shown
in Figure 3. Though our examples use destination-source
tries, we note that the idea can be abstracted to handle
filters with any two prefix fields (and the remaining fields
completely wildcarded).

Figure 3: An example with 7 d&-source filters.

5.1 Set Pruning Trees

To motivate our grid-of-tries scheme, we begin by describing
two dimensional set pruning trees. We build a trie on the
destination prefixes in the database. Figure 4 illustrates the
construction for the example database in Figure 3. Each
valid prefix in the Destination Trie (Dest-Trie) points to a
trie containing some source prefixes. The question is: which
source prefixes should we store?

For instance, consider D = 00. Both filters F+ and Fs
have this destination prefix, and so we need to store the
corresponding source prefixes 1* and II* at D. But stor-
ing only these filters is not sufficient, since filters Fl, Fz, F3
also match whatever destination D matches. In fact, the
wildcard destination prefix * of F7 also matches whatever D
matches. Suppose we get a packet whose destination header
starts with 00 and whose source address starts with 101.
Then, the least cost filter matching this header is the low-
est cost filter among {FL, F3, Fa}. This suggests we need
to store at D = 00 a source trie containing the source pre-
fixes for { Fl , Fz, F3, F4, Fs, F,}, because these are the filters
whose destination is a prefix of D. Figure 4 shows the com-
plete data structure for the database in Figure 3.

In this trie of tries, we first match the destination of the
header in Dest-Trie. This yields the longest match on the
destination Drefix. We then traverse the associated source

1

trie to find the longest source
source trie, we keep track of the

match. As we search the
lowest cost matching filter.

Since all filters that have a matching destination prefix are
stored in the source trie being searched, we find the correct
least cost filter. This is the basic idea behind set pruning
trees [29, 71.

Unfortunatelv. this simDle extension of tries from one to
two dimensions Kas a meiory blowup problem. The prob-
lem arises because a source prefix can occur in multiple tries.
In Figure 4, for instance, the source prefixes S1, Sz, SB ap-
pear in trie associated with D = OO* as well as D = O+. A
worst-case example forcing O(N’) memory is created using
the set of filters shown in Figure 5. The problem is that
since destination prefix * matches any destination header,
each of the N/2 source prefixes are copied N/2 times, one
for each destination prefix.

194

fi Dest-Trie

: ‘..

Figure 4: The first idea for grid-of-tries. It may require O(N*) memory for

N filters in the worst case. Dest-Trie is a trie for the destination prefixes. The

nodes corresponding to a valid destination prefix in the database are shown

as solid: others are shown as circles. Each valid destination prefix D has a

pointer to a trie containing the source prefixes that belong to filters whose

destination field is a prefix of D.

n Filter I Destination I Source n
IL

FI I Dl
-I R *

F2 D2 *

Figure 5: An example forcing Na memory for two dimensional set pruning
trees. Similar examples, that apply to a number of other simple schemes, can
be used to show N” storage for K dimensional filters.

5.2 Avoiding the Memory Blowup

In order to avoid the memory blowup of the simple trie
scheme, we observe that filters associated with a destination
prefix D are copied into the source trie of D’ whenever D is
a prefix of D’. For instance, in Figure 4, the prefix D = 00
has two filters associated with it: F4 and F5. The others
Fl, Fz, F3 are copied because their destination field 0 is a
prefix of D; similarly, F7 is copied because its destination
field * is also a prefix of 00.

We can avoid the copying by having each destination
prefix D point to a source trie that stores the filters whose
destination field is exactly D. This requires us to also mod-
ify the search strategy as follows: instead of just searching
the source trie for the best matching destination prefix D,
we must now search the source tries associated with all the
ancestors of D.

In order to search for the least cost filter, we first traverse
the Dest-Trie, and find the longest destination prefix D’
matching the header. We search the source trie of D’, and
update the least cost matching filter. We then work our way
back up the Dest-Trie, and search the source trie associated
with every prefix of D’ that points to a nonempty source
trie.4

Since each filter now is stored exactly once, the men-

41n this scheme, we could search each of the source tnes corre-
sponding to prefixes of the destination in any order without changing
the search time; we used this particular order m order to motivate
our final scheme.

De&-T&

F2 Fl

Source Tries

Figure 6: Avoiding the memory blowup, by storing each filter in exactly one

trie.

ory requirement for the new structure is O(NW), which is
a significantly improvement over the the previous scheme.
Unfortunately, the lookup cost in the new scheme is worse
than the first scheme: in the worst-case, the lookup costs
@(IV’), where W is the maximum number of bits specified
in the destination or source fields. The @(IV’) bound on the
search cost follows from the observation that, in the worst-
case, we may end up searching W source tries, each at the
cost of O(W), for a total of O(W’).

5.3 Improving Search Time: Basic Grid-of-Tries

We now describe our key ideas for improving the search
cost in two-dimensional tries from O(W*) to O(W), while
keeping the memory requirement linear. The key idea is to
use precomputation and switch pointers to speed up search
in a later source trie based on the search in an earlier source
trie. Figure 7 shows the construction with switch pointers.
The switch pointers are shown using dashed lines between
source tries. This is to distinguish the switch pointers from
the dotted lines that connect the Dest-Trie nodes to the
corresponding source tries.

Figure 7: Improving the search cost with the use of switch pointers.

In order to understand the role of switch pointers, con-
sider matching a packet with destination address 001 and
source address 001. The search in the Dest-Trie gives D =
00 as the best match. So we start our search for the matching
source prefix in the associated source trie, which contains fil-
ters FL4 and Ps. However, the search immediately fails, since
the first bit of the source is 0. In the previous scheme, we
would back up along the Dest-Trie and restart the search in
the source trie of D = O*, the parent of OO*.

In the new scheme, however, we use the switch pointer
to directly jump to the node 5 in source trie containing

19s

{F’, , &, r;l,}. Similarly, when the search on the next bit of
tire source fails again, we jump to the node 11 of the third
sower trie (associated with the destination prefix *). In-
t,rrit,ively, the switch pointers allow us to jump directly to
the Lowest point, in t,he ancestor source trie which has at,
least as good a source match as the current node. This al-
low us to skip over all filt-ers in the next ancestor source
t,rie whose sorrrcc fields are shorter than the current source
mat,ch. This in turn improves t,he search complexity from
O(W) to O(W).

We now define t,he switch pointers more precisely. We
say Ohat destinat,ion string D’ is an ancestor of LI if D’ is
a prefix OF D. We say that lI’ is the lowest ancestor of
U if n’ is the longest prefix of D in the Destination Trie.
I,ct, ‘T(D) denote t,he source trie pointed to by D. (Recall
t.fmt 7‘(L)) contains the source fields of exactly those filters
whose destination field is D.) Let u be a node in T(D) t,hat
f& on bit 0; that is, if ZI corresponds to the source prefix
s, then the trie 7’(n) has no string starting with SO. Let
D” he the lowest ancestor of D whose source trie contains a
source string starting with prefix SO, say, at node V. Then,
we place a switch pointer at node u pointing to node o. If
no such node v exists, the switch pointer is nil. The switch
pointer for failure on bit 1 is defined similarly. For instance,
in Figure 7, the node labeled L fails on bit 0, and it has a
switch pointer to the node labeled y.

‘I’he switch pointers allow us to increase the length of the
matching source prefix, without having to restart at the root
of the next, ancestor source trie. In particular, they allow us
t,o skip over all filters in the next source trie whose source
fields are shorter than the current source match.

I”OOT instance, consider the packet header (OOt, lot). We
start, with the first source trie, pointed to by the destination
t.rie node OOt. WC match the first source bit 1, which gives
us filter r;h. But then we fail on the second bit, and there-
fore follow the switch pointer, which leads to the node in
t,he second trie labeled with the filter Fr The switch point-
ers at the node containing Fr are both nil, and the search
terminates. Not,e, however, that we have missed the filter
Fs := (Or, L*), which also matches the packet. While in this
case FJ has lrigher cost than Fr , in general the overlooked
filter could have lower cost.

We solve this problem by having each node in a source
t,rir maint,ain a variable storedFilter. Specifically, a node
v with destination prefix D ad source prefix S stores in
slo~edpilter(v) the least cost filter whose destination field is
a prefix of III and whose source field is a prefix of S. With
bhis precomputat~ion, the node labeled with Fr in Figure 7
would store information about Fs if F3 had lower cost than
r;;.

Finally, we argrrc that, the search cost in the final scheme
is at. most, 2W. The time to find the best destination prefix
is al most I/V. After that all the time is spent, traversing the
somce tries. However, in each step, the length of the match
on the source field increases by one-either by traversing
further down in the same t,rie, or following a switch pointer
to an ancestral trie. Since the maximum length of t,he source
prefixes is W, the total time spent in searching the source
tries is also W. The memory requirement is O(NW), since
eaclr of N filters is stored only once, and each filter requires
O(W) space.

5.4 Further Improvements

Several improvements to the previous scheme are possible.
First notice that the only role played by the Dest-Trie is in

determining the longest matching destination prefix. The
longest matching destination prefix tells us in which source
trie to start searching. From that point on, the Dest-Trie
plays no role, and we move among source tries using switch
pointers. Thus, the first improvement is to replace the Dest-
Trie with a fast scheme for determining the best match-
ing prefix [9, 311 of the destination address. The scheme
proposed in [31] requires O(log W) time in the worst-case
for finding the longest matching prefix. Combining this
scheme with the grid-of-tries leads to a total lookup time
of (log W + W) for destination-source filters.

Second, instead of using l-bit source tries, we can use
multi-bit tries [27]. In multi-bit tries, we first expand each
destination or source prefix to the next multiple of k. For
instance, suppose we use k = 2. Then, in the example of
Figure 7, the destination prefix O* of filters Fl , Fz, F3 is ex-
panded to 00 and 01. The source prefixes of F3, F4, FE are
expanded to 10 and 11. If we use k-bit expansion, a sin-
gle prefix might expand to Zk-r prefixes. The total memory
requirement grows from 2NW to NW2k/k, and so the mem-
ory blows up by the factor 2’“-l/k. On the other hand, the
depth of the trie reduces to W/k, and so the total lookup
time becomes O(log W + W/k). Depending on the memory
available, one can optimize the time-space tradeoff as in [27].

5.5 Extending Grid-of-tries to Handle Protocol and Ports

We now describe how to handle more general filters (with
the protocol type and port number fields specified) using the
grid-of-tries. We will assume that the port number field in
each filter is either a single port number or a wild card.5

We partition the filters into a small number of classes,
each of which only requires a lookup using the destination-
source combination. First, we eliminate the Protocol field
at the cost of increasing the memory by a factor of 3, as
follows. There are two main protocols, TCP and UDP; all
other protocols are grouped under the class “Other” for the
purpose of packet forwarding. Note that port numbers are
only defined for TCP and UDP, and not for the other pro-
tocols. Thus, we replicate three times any filter with a *
in the protocol field, using 3 values of the protocol, TCP,
UDP, and Other. So we now have only two remaining port
fields. We build 4 hash tables, one for each possible com-
bination of port fields (both unspecified, destination only,
source only, and both specified). The hash tables are in-
dexed by the combination of port fields and the protocol
field (TCP, UDP, or Other). See Figure 8.

Given a filter of the form (D,S, TCP,Pl, *), we first
place an entry, if it does not already exist, in the (DstPort, *)
hash table with a key of (TCP, Pl). This points to a grid-of-
tries structure representing the destination and source pre-
fixes of all the filters that have Prot = TCP, DstPort = Pl
and SrcPort = *. This is shown in Figure 8. Each filter is
placed in exactly one grid-of-tries structure, which keeps the
memory linear in the number of filters.

Finally, to search for a header, we search each of the four
hash tables in turn. When searching a hash table, we use the
actual port numbers and the protocol field to follow a pointer
to a grid-of-tries, where we perform the search we described.
For each of the four grid-of-tries we search, we keep track
of the lowest matching filter. A simple optimization is to
combine the hash of the port number fields with the lookup

‘While grid-of-t,ries can be extended to handle port number ranges
by creating further two dimensional “planes”, this causes further loss
of efficiency. A better scheme for firewall filters that use port number
ranges is cross-producting, described later.

196

in the first trie node of the grid-of-tries (see Figure 8). This
saves 4 hashes.

Hash Tab/e Hash Table Hash Jab/e Hash Table
for (’ *) for (DstPoti ‘) for (’ SycPortj for (D$Port SrcPod)

/ L-2
,----p-------~----------,

, Grid of tries correspondrng to
I Destination and Source Fields in Filters whose 1
L Protocol = TCP, DestPort = PI and SrcPort is * 1

___---__----~_---------

Figure 8: Extending basic grid-of-tries to deal with port number fields.

6 Cross-Producting

The grid-of-tries scheme has excellent performance for two
dimensional prefixes matches such as Destination-Source fil-
ters. It requires only linear memory and takes time equiva-
lent to doing IP lookups on both the source and destination
address. While this is extremely useful in many important
cases such as Virtual Private Networks, we need to consider
more general filters for applications like firewalls. The grid-
of-tries can be extended to handle other fields by replicating
the grid-of-tries structure. In the last section, we showed
that if the port number fields were either wildcarded or fully
specified (no ranges), then we could do so using four grid-of-
trie structures. While this is itself expensive, it gets worse
if we have to handle filters with port number ranges.

We now describe our second algorithm, cross-producting,
for the filter matching problem. Unlike the grid-of-tries,
cross-producting can easily handle arbitrary filters (includ-
ing filters with range specifications) at high speeds. How-
ever, either its memory needs or search times are less pre-
dictable than grid-of-tries. Thus our final scheme will com-
bine the best features of grid-of-tries and cross-producting.
We proceed to describe cross-producting.

The main idea behind cross-producting is the following:
we start by slicing the filter database into columns, with
the ith column storing all distinct prefixes in field i. Then,
given a packet P, we determine the best matching prefix
for each of its fields separately, and combine the results of
the best matching prefix lookups on individual fields. The
main problem, of course, lies in finding an efficient method
for combining the lookup of individual fields into a single
compound lookup.

To this end, we start by slicing the database of Figure 2
into individual prefix fields. In the sliced columns, from now
on we will refer to the wildcard character r by the string
default. Recall that the mail gateway M and internal NTP
agent TI are full IP addresses that lie within the prefix range
of Net. The sliced database is shown in Figure !3.

At the top of each column, we have indicated the num-
ber of elements in the column. Consider a &tuple, formed
by taking one value from each column. We call this a cross-
product. Altogether, we have 4 * 4 * 5 * 2 * 3 = 480 possi-
ble cross-products. Some sample cross-products are shown
in Figure 10. If we consider the destination field to be most
significant and the flags field to be least significant, and if
we pretend that values increase down a column, we can or-
der the cross-products from the smallest to the largest, as
in any number system.

Our key insight is as follows: given a packet P, if we do
a best matching prefix operation for each field P[i] in the

53 / 1 Default 1 TCP-ACK~

23 Defwlt

123 I

Default ,

Figure 9: The database of Figure 2 “sliced” into columns where each col-
umn contains the set of prefixes corresponding to a particularfield.

Mum

I
2

3

4

5

6
.
.

479

480

CrossProduct

M. S. 25. 123, 1JDP

M. 5, 2.5. 123. TCP-ACK

M, S. 25. 123, default

M. S, 25, default, UDP

M. S, 25. default. TCP-ACK

M, S, 25. detault, default
. . .
. . .

efault.default,defauIt.default.TCP-ACK

~efault,default.default,default,detault

Matching
Filter

Filter I

Filk!l I

Filter I

Filter I

Filter 1

Filter I
.
.

Ftlter 8

Filter 8

Figure 10: A sample of the cross-products obtained by cross-producting
the-individual prefix tables of Figure 9

corresponding sliced prefix database, and concatenate the
results to form a cross-product C, then the least cost filter
matching P is the same as the least cost filter matching C.
This can be formalized by t,he following simple theorem:

Theorem 6.1 For any packet P and its associated CTOSS-
product C = M, . MI<, the best matching jilter of C is l/x

best matching filter of P

Proof: Suppose not. Silice each field in C is a prefix of the
corresponding field in P, every filter that matches C also
matches P. Thus the only case in which P has a different,
matching filter is if there is some filter F’that matches P but
not C. This implies that there is some field i such that fli]
is a prefix of P[i] but, not, of Mt. But since M, is a prefix
of P[i], this can only happen if F[i] is longer than M,. But
that contradicts our assumption that M, was the longest
matching prefix in column i.

Thus, the basic cross-producting algorithm is to build a
table of all possible cross-products and precompule the least
cost filter matching each cross-product. This is shown in
Figure 10. Then, given a packet header, we can determine
the least cost matching filt,er for the packet with I(best
matching prefix operations plus a single hash table lookup of
the cross-product table. For small databases, the individual
prefix lookups may reside in cache and result in li cache
accesses together with a single memory lookup. In hardware,
each of the li prefix lookups can be done in parallel.

As an example, consider matching a packet with header
(111, S, UDP, 53,57) in the database of Figure 2. The cross-
product obtained by performing best matching prefixes on
individual fields is (M, S, UDP, 53, default). One can eas-
ily check that the precomputed filter for this cross-product
is Filter 2-although 1:ilters 3 and 8 also match the cross-
product, Filter 2 has the least cost.

This simple cross-producting algorithm sufleers from a
memory explosion problem: in the worst case, the cross-
product table can have N” entries where N is the number

197

of filters and I< is the number of fields. Thus, even for mod-
erate values, say, N = 100 and K = 5, the table size can
reach lo”, which is prohibitively large. In the following, we
describe a simple optimization t,hat can reduce the memory
rtrquirement considerably.

6.1 On Demand Cross-Producting

The major idea to reduce memory is to build the cross-
products on demand: instead of building the complete cross-
product table at the start, we incrementally add entries to
tile table. ‘l%e prefix tables for each field are built as before.
When a packet P arrives, we perform best matching prefixes
on the individual fields t,o compute a cross-product term C.
If’ the cross-product table has an entry for C, then of course
the associated filter is returned. However, if there is no entry
for C in the cross-product table, we find the best matching
filter for C (possibly using a linear search of tile database),
and insert that, entry into the cross-product table. Of course,
any subsequent packets with cross-product C will yield fast
lookups. Figure t 1 shows pseudo-code for build and search
for on-demand cross-productiug.

3nild DataStucture: (* called whenever a filter changes *)
for i = 1 to K (* K is number of packet fields *)

Let S, be the set of distinct prefixes in field i of any Filter
Pre,fizTahle[i] := BuildTable (* prefix table for field i*)

ZrossSearch(P) (* called on arrival of packet I’ *)
for i = I to li

M, := I+-efizLookup(P[i], Prefid-able[i]);
C := M, M2 iz/II;; (* cross-product for P *)
R := (IlashLookup(C, CrossPruductl’able))
if R = nil then (*not in table’)

Find the first filter R’ matching C
Hashlnserl(C, R’, GrossJ~roductTable) (* insert filter for C *)
neturn (R’)

else Return (R);

Figure 11: Pseudo Code for On Demand Cross Producting

On-drmand cross-producting can greatly improve both
the building time of the data structure as well its storage
cost. In fact, we can treat the cross-product, table as a cache
and remove all cross-products that have not been recently
used. Wc have discovered a number of optimizations to al-
low incremental computation of the cross-product database
when filters are added, but we defer these results to another
paper.

We said earlier that caching was not every effective, so
why should caching based on cross-producting be more ef-
fcctivc? Consider the database of Figure 2, and imagine
a series of web accesses from an internal site to the exter-
nal network. Suppose the external destinations accessed are
U1, , Uhf. All these addresses correspond to tz~uo cross-
product t,erms (*, Net, *, *, TCP-ACK) and (*, Net, t, *, *).
While full-header caching will result in 2M distinct entries
in the cache, cross-producting cache will need only two en-
tries. Examples like these lead us to believe that the hit
rates for the cross-product cache should be much better than
s(,andard header caches. Clearly the benefits of on-demand
cross-producting need to be validated wit,h actual packet
traces. We plan to do so in future work.

7 Lower Bounds

We have seen that the grid-of-tries scheme works well for
two-dimensional prefix matches (such as destination-source
pairs), but? it requires multiple planes (grid-of-tries) to solve
the problem for general filters. On the other hand, pure
cross-producting is very fast but can require a prohibitive
amount of memory. On-demand cross-producting appears
t,o offer a good caching solution but does not guarantee
worst case performance. Set pruning trees are also very
fast but require a prohibitive amount of memory in the
general case. These observations raise a natural question:
are there schemes that can handle hundreds of thousands of
arbitrary filters with bounded memory and fast worst-case
search times?

It. seems unlikely that a fast and scalable scheme ex-
ists for completely arbitrary multi-dimensional filters. It is
known that general multidimensional range searching over
N ranges in d dimensions requires U((log N)“-‘) worst-case
time if the memory is limited to about linear size [4, 51. No-
tice that this lower bound allows the two dimensional case to
be as fast as O(log N). Once again, the two dimensional case
seems to be special, and allows a fast and scalable solution.

The lower bounds of [4, 51 hold in an arithmetic model of
computation, and do not apply to schemes based on hashing
and tries. The repeated hashing scheme of [31], for instance,
offers an O(log IV) solution for the one-dimensional prefix
matching problem, where W is the maximum prefix length.
Thus it seems plausible to look for general solutions based
on the techniques of [31]. We did pursue such an approach
based on repeated hashing for generalized filter matching.
We defer the detailed description of those results to another
paper [26], but summarize our main results in the following
paragraph.

First, we were able to devise a hashing scheme that takes
2W - 1 hashes in the worst-case for the two-dimensional
prefix matching problem (e.g., source-destination prefixes).
We called this scheme rectangle search. More importantly,
we were able to show a matching lower bound of 2W - 1
hashes. The lower bound was then extended to show that
for any dimension k > 1, schemes based on the techniques
in [31] would require W”-’ hashes. This fits in nicely with
the lower bound for multidimensional range matching. The
bottom line is that the one and two dimensional cases appear
to bc special, and extensions to higher dimensions appear
to be slow.

Our lower bound does not apply to schemes based on
tries, and thus to grid-of-tries. However, it seems plausible
that schemes based on tries can be emulated by schemes
based on hashing. Suppose the trie scheme is at a node N
(that was reached using some string P from the root of trie
search) and follows a pointer at location I. A hash based
scheme can determine the same pointer by looking up a hash
table indexed by the complete path PI. While this is only a
very rough plausibility argument and applies only to certain
types of trie search schemes, it does make us suspect that
it is infeasible to find a more efficient generalization of grid-
of-tries to higher dimensions.

Do these theoretical arguments imply that Layer 4 switch-
ing cannot be implemented in real routers at high speeds
without requiring infeasible amounts of memory? We do
not think so. This is because we believe that in practice
filter databases will only have a small number of completely
general filters (e.g., firewall filters); the vast majority of the
filters will be restricted to destination prefixes, destination-
source prefixes, and filters with all 5 fields completely spec-

198

ified. If this assumption is true, we can leverage off the
assumed distribution of filters to construct an efficient com-
bined scheme that we describe next.

8 A Combined Scheme

We envisage filter databases of the future to consist of a
large number (say 8010 of pure destination prefix filters
(standard IP forwarding), a fairly large number (say 201i)
of fully specified filters (destination, source and both port
fields fully specified for say bandwidth reservations), a fairly
large number (say 2010 of destination-source prefix filters
(e.g., for multicast forwarding and virtual private networks),
and a smaller number (say 110 of completely arbitrary fil-
ters with port ranges (e.g., for firewalls). Thus rather than
have a flat worst case figure for all types of filters, it makes
sense to have a scheme that can optimize the important
special cases (e.g., pure destination prefix filters). We have
seen in the previous sections that the grid-of-tries works op-
timally for destination and destination-source prefix filters.
On the other hand, on-demand cross-producting can handle
arbitrary filters but with less predictable speed (because of
possible cache misses). Thus it makes sense to combine the
two schemes.

The simplest combination is to divide the filters into
two sets. The first set of filters with pure destination and
destination-source prefixes is handled by a single grid-of-
tries. The second set containing the remaining filters is
handled by cross-producting. This simple scheme has two
disadvantages. First, the common case of destination only
and destination-source prefixes requires a cross-producting
search on the remaining filters to ensure that there is no
lower cost filter in the second set. Second, cross-producting
search requires a destination and source prefix lookup which
is also done in the grid-of-tries search; this is wasteful. ln-
stead, our combined scheme will attempt to terminate the
grid-of tries search in the common casts; it will also avoid
redundant destination and source lookups if we have to fall
back on cross-producting.

A key idea required for early termination is the concept
of filter overlap. We say that two filters F and F’ over-
lap if there is some packet header that matches both F and
F’. Suppose, during our search, we find a filter F that
matches packet P. If we can ensure that no other filter in
the database overlaps with F, then we can terminate the
search and output F as the least cost filter. Our search
will match against progressively more complex filters. lni-
tially, we will try to see if the packet matches a destination-
only filter (D, *, *, *, *), which does not overlap any other
filter. Failing this, we will look for a destination-source fil-
ter (D, S, *, *, *). If that also fails, we will do a cross-product
search, but will only need to do the best matching prefix on
the remaining Ii’ - 2 fields.

We need to modify slightly both the grid-of-tries as well
as the cross-producting algorithm for our combined scheme.
We divide the set of filters into two sets. We allocate filters
that have (*, *) in the port fields to the first set, which we
call the port-free filter set Go. All other filters are allocated
to what we call the port-full filter set G1.

For the combined scheme, we need to project port-full
filters into Go That is, for each port-full filter F E G1,
we create a projection filter F’ obtained by wild-carding the
port entries of F. In order to distinguish the original port-
free filters from the projected filters, we add a bit port to

each filter, which is set to 0 for the port-free filters, and
to 1 for the projection of port-full filters. The reason for

adding the projections of port-full filters is that now filters
in the enhanced group Go contain all destination and source
prefixes in the database. This allows cross-producting to
avoid a redundant computation of destination and source
prefix matches.

We now build a single grid-of-tries structure for this en-
hanced group Go. For each port-free filter F E Go (that
is, post = 0), we associate an additional bit, called the
overlap bit, which is set if F overlaps with some other filter
in the filter database; otherwise the bit is false. For each
port-free filter F, we compute F’ = storedFilter(where
F’ is the least cost port-free filter whose destination and
source fields are prefixes of the corresponding fields of F.

Given a packet P, we start with the grid-of-tries search.
As usual, we begin by finding the best matching prefix Dbmp
for the destination firld P[l]. If the source trie associated
with Dbmp has a filter F = (Dbmpr *, *, *, *), with port(F) =
0 and overlap(F) = 0, then we output F as the least cost
filter for P and stop.

Otherwise, we perform the normal grid-of-tries search,
starting at Dbmp. We initialize an overlap bit overlap = O.
Whenever we arrive at a new node that has a port-free filter
F stored with it, we update the least cost filter, and set
overlap = max{over/ap(F), overlap}. When the search for
the group Go ends, if overlap = 0 and if the temporary
variable containing the least cost filter is non-nil, we output
that filter and terminate the search. If either overlap = 1
or the least cost filter variable is nil, we initiate the cross-
producting search.

We need to modify the normal cross-producting search
as follows. Instead of using the best matching prefix for the
source address P[2], we use the best matching prefix of P[2]
among the filters whose destination jield is a prefix of the
packet’s destination P[l]. It is not hard to show that this
modification preserves correctness.

We already know the best matching prefix Dbmp for the
destination field. Let Sbmp be the source prefix at the node
where t.he grid-of-tries search terminated. We claim that
Sbmp is the best matching prefix of the source field among
all filters whose destination field is compatible with P[l].
Therefore, we do not repeat the best matching prefix compu-
tation for destination and source addresses. We perform the
prefix computation for the remaining fields, protocol type
and port numbers, and concatenate the best matching pre-
fix into a cross-product, term C. Next, we hash into the
cross-product table to see if C exists. If it does, we output
the filter stored there. Otherwise, we do some other search
algorithm (e.g., linear search) among the port-fulI filters.
When the search finishes, we add the corresponding entry
to the cross-product table.

Recall that we said that fully spccificd filters (where
all four fields are full specified) may be commonly used
for reserving voice and video bandwidth. The combina-
tion scheme described so far would allocate such filters to
the port-full set, and thus would require a cross-producting
search for such filters. This can greatly increase the number
of possible cross-products and so reduce the effectiveness of
the cross-product cache. If we assume that the destination
and source fields of such filters are not prefixes, and the port
numbers have no wild cards or ranges, a simple trick is to
place such filters in a third set that can be handled by a sin-
glc hash on all four fields. We can do this search before we
fall back on the cross-producting search. If we get a match,
we can terminate. This is because with every match in t,his
fully specified set we can precompute the associated best,
matching filter.

199

The net, result is that the combined scheme will process
packets that map to destination filters that have no overlap
with other filters in time equal to one II’ lookup (3-4 mem-
ory accesses using multibit tries [27, 9]), process packets that
map to destinat,ion-source filt,ers (that have no further over-
lap) in time equal lo two II’ lookups using the grid-of-tries
(6-8 memory accesses), process packet,s that map to fully
specified filters in one more hash (a total of 7-9 memory ac-
cesses), and finish all other filters using Iwo more port uum-
her field lookups followed by a hash into the cross-product
table (a total of lo-12 memory accesses) if the cross-product,
is c,ached. Since the cross-product table only corresponds to
filters that are not either in the port-full or fully specified
sets (corresponding to what we hope is a small number of
fircwall filters), this should allow good caching performance
for these remaining filters.

We not,e that that several other combination schemes are
possible. For instance, a hardware scheme might implement
each of the four planes of the extended grid-of-trie search
in parallel. Since the extended grid-of-tries does not handle
port number ranges, filters with port number ranges could
be handled by (say) a small additional content addressable
memory (CAM).

9 Implementation and Measurements

For our implementation platform, we chose a 300 Mhz Pen-
tium II (system cost under 5000 dollars) running Windows
NT that had a 512 KBytes L2 cache and a cache line size
of 32 bytes. We believe the results would be similar if run
on other comparable platforms such as the Alpha. We use
a tool called Vtune [13] that gives us access to dynamic in-
struction counts, cache performance, and clock cycles for
short program segments. We did evaluations for the grid-
of-tries scheme as well as for cross-producting. We did not
finish an implementation of the combined scheme; thus we
can only provide estimates of the performance of the com-
bined scheme.

9.1 Grid-of-Tries Implementation Measurements

First, we report on the worst case time for a simple grid-
of-tries implementation that can process destination-source
filters. Our implementation used multibit tries [27] sampling
8 bits at, a t)irne for the Destination trie; each of the source
tries started with a 12 bit t,rie node, followed by 5 bit, trie
nodes. This yields a worst case of 9 memory accesses (we
could easily have done the source tries 8 bits at a time to
yield a worst case of 8 memory accesses but, that increases
storage.)

Destination-Source Filters: Using VTune on the 300 Mhz
Pentium II, we measured the worst case path as taking 870
nsec using a memory access time of 60 nsec and a clock
tick interval of 3.333 nsec. The numbers for a single IP
lookup reported in, for example, [9] are around 400 nsec,
and so this roughly corresponds to two IP lookups. For
destination-source filters this appears to be optimal as it
is hard to find the lowest cost matching filter any faster
than doing an individual best matching prefix on both source
and dest,ination addresses. The memory required for 20,000
filters was around 2 Mbytes and the time taken to const,ruc1
tho entire data st,ruclurc was 8 seconds.

General Filters: We built a 4 plane grid-of-tries that, can
handle more general filters (Section 5.5) wit,h fully specified

port numbers. Since there are no layer 4 databases available,
we started with a publically available database of pure des-
tination prefixes (D, *, * , *, *) entries, and added further
entries which specialize some of these entries. For our exper-
iment, we took the publicly available MaeEast database [20]
(around 40000 prefixes). We randomly chose 5000 destina-
tion prefixes to create further filters. For each (D, *, *, *, *)
prefix chosen, several filters were added which were of the
form (D, *, TCP, Pl, *), (D, S, *, *, *), (D, S, TCP, PI, *)
and (D, S, TCP, Pl P2). The source prefixes were chosen
randomly from the set of 40000 prefixes. From each des-
tination prefix in MaeEast, 20 filters were generated. The
number of filters of each form was varied, but together 20 fil-
ters were generated for each chosen destination prefix. Port
numbers were generated randomly.

The following table was obtained using the following dis-
tribution of filters. For each of the 5000 pure destination
prefix (D, *, *, *, *) filters that we specialized, we made up
five (D, S, *, *, *) filters, four (D, S, TCP, Pl, *) filters,
five (D, S, TCP, Pl P2) filters, and five (D, *, TCP, Pl,
*) filters. Together with the original destination prefix, the
total adds up to twenty filters.

Table 1: 4 planes grid-of-tries implementation measure-
ments on a 300 Mhz Pentium

The worst case time for the 4 plane grid-of-tries search
was measured using VTune to be 0.9 usec per plane, or a
total of 3.6 usec. The number per plane (0.9) is slightly
more than the measured number for a single grid-of-tries
search because of the need for the additional hash of the
port number fields (see Section 5.5).

9.2 Cross-producting Implementation Measurements

Since we expect cross-producting to be used with small fil-
ter databases (with arbitrary port number ranges), we used
a firewall database to test cross-producting. The firewall
filters we used are generated based on a 20 filter database
in [6], which is described as a sample firewall database for
a university. To create larger databases, we added similar
filters to the base 20 filter database, while maintaining the
ratio of the number of distinct longest matching prefixes in
a field with the total number of prefixes in the field.

Note that the longest matching prefix in the source and
destination fields can be found by any technique. We used
a multibit trie [27] approach. The port lookups are imple-
mented as full arrays. Note that only the final cross-product
table is in main memory; the structures for the individual
fields for such a small database can be in the L2 cache. The
final cross-product table can be implemented either as an
array or as a hash table. We used simple cross-producting
for small filter sets; in that case the final table can be imple-
mented as an array which can be looked up by an index that
is the concatenation of indexes returned by the individual
column lookups. For databases with more than 50 filters, on-
demand cross-producting is essential. For on-demand cross-
producting to reduce memory, the final cross-product table

200

must be a hash table.

Table 2: Cross-product,ing implementation measurements
on a 300 Mhz Pent,ium

For worst case t,ime measurement, we use Vtune based
clock cycle counts. If L2 is the access delay from the L2 cache
(=15 nsec), then the worst, case filter lookup time when using
an array for t,he cross-product, table was 475 nsec. When wc
use hashing antI on-demand cross-producting the worst cast
is harcler to evaluat,e. Since we used a hash function that
gave almost no collisions and we expect the on-demand cache
hit rate to be high, the “worst case” figure shown when using
hashing and on-demand assumes no hash collisions and a
cache hit in the cross-product table.

For many firewall databases, the destination and source
addresses are often full addresses instead of prefixes. In
this case the destination and source column lookups would
take a single hash each (instead of several memory accesses
needed to do a longest matching prefix). Assuming a 10
clock cycle hash function, filter resolution in this special
case (no prefixes) can be done in a worst case of 200 nsec
which is twice as fast as the general case (400-500 nsec)

10 Conclusions

We have described two algorithms for packet filtering at Gi-
gabit speeds. The grid-of-t,ries solution provides a scalable
(linear storage) and fast, (worst, case time equal to two IP
lookups, 870 nsec on a Pentium II) for destination-source fil-
ters. Such filters can be used to iml)lement Virtual Private
networks and multicast forwarding efficiently. The grid-of-
tries solution can be extended to handle more general filters
but at a high Lookup cost (3.6 psec for filters without even
allowing port number ranges). On the other hand, the cross-
producting solution provides fast, lookup times (around 500
nscc) for small (up to 1000 filters) but has less predictable
lookup times because of the need for caching cross-products
to make the storage needs manageable.

We then described a simple combined scheme that uses
grid-of-t)ries to handle all dest,inat.iorl-source and pure desti-
nation or source filters. We anticipate that this will handle a
large maj0rit.y of the filt,ers, and that packets matching such
filters will terminate after a grid-of-tries search. Packets
whose best matching filter is a pure de&nation prefix filter
can be further optimized to terminate after a search in the
destination trie (one IP address lookup). Fully specified fil-
ters, used for say II’ telephony, can be handled with a single
extra hash on all five fields. Finally, the remaining filters
(e.g., firewall filters) can be handled by on-demand cross-
producting. Information from the initial grid-of-tries search
can IX used to prevent the cross-producting step from re-
computing longest matching prefixes for the destination and
source addresses.

Based on the mrasurement,s for the individual compo-
nents on the Pentium 11, we eslimate 450 nsec lookup times
for packets that map to pure destination prefixes, 900 nsec
for packets that map to destinat,ion-source filt,rrs, 1000 nsec

for packets that map on to fully specified filters, and 1500
nscc (assuming a hit in the cross-product cache) for pack-
ets that map on to more general filters. Hardware engines
can do better because of increased opportunities for paral-
lelism and pipelining, Given that the average packet size is
around 2000 bits [a], a worst case lookup time of 1500 nsec
allows 0.75 million packets per second, which allows a Layer
4 router to keep up with a Gigabit link.

As best matching prefix is a special case of lowest cost
matching filler, it is not surprising that filter search schemes
are generalizations of prefix search schemes. Thus, the grid-
of-tries and set. pruning trees [29, 7] generalize trie schemes
for prefix matching [9, 27, 221. Multidimensional range match-
ing schemes [15] generalize prefix matching schemes based on
range matching [16]. Rectangle search and Tuple Search [26]
generalize binary search on hash tables [31]. While cross-
producting is not a generalization of an existing prefix match-
ing scheme, it can be specialized for prefix lookups as well.

For future work, we would like to create other filter
lookup algorithms that are specialized for certain important
filter types (e.g., the way grid-of-tries is specialized for two
dimensional filters). It would be useful to have benchmark
filter databases to compare lookup schemes. We also hope
to be able to do trace-driven evaluation of the effectiveness
of on-demand cross-producting. Finally, we have made no
effort to have fast filter insertion. Because of issues like BGP
implementation instabilities [14] (which can add destination
prefixes in the order of milliseconds), and RSVP [32] reser-
vations (which can add other filters in the order of seconds),
it is important to have faster filter insertion algorithms.

Despite the work t,hat remains to be done, we believe that
Layer 4 Switching is feasible for high performance routers.
We do not know whether routers of the future will forward
based on Layer 4 headers or based only on fields in the
routing header. In either case, we believe that applications
like QoS Routing, Firewalls, Virtual Private Networks, and
Large Scale Multicast will require a more flexible form of
forwarding based on multiple fields, whether they be in the
routing header or elsewhere. We believe the techniques in
this paper indicate that such forwarding flexibility can go
together with high performance.

11 Acknowledgements

The observation that the Protocol field can be eliminated in
many cases of interest is due to Hari Adiseshu. We would
like to thank Hari for initial discussions that led to the grid-
of-tries scheme. We thank Zubin Dittta, Will Eatherton,
and Jon Turner for valuable discussions.

References

[II
['21

[31

[4I

[51

M. Bailey et al. PathFinder. Proceedings of OSDI 94.

S. Bradner. Next generation routers overview. Proc. of
Networld hterop 97.

B. Chapman and E. Zwicky. Building Internet Fire-
walls. O’Reilly and Associates, 1995.

B. Chazelle. Lower bounds for orthogonal range search-
ing, 1: The reporting case. J. of the ACM, 37, pp. 200-
212, 1990.

B. Chazellc. Lower bounds for orthogonal range search-
ing, II: The Arithmetic model. J. of the AC’M, 37,
pp. 439-463, 1990.

201

[6] W. Cheswick and S. Bellovin. Firewalls and Internet
Security. Addison- Wesley, 1995.

[7] D. Decasper, Z. Dittia, G. Parulkar, B. Plattner.
Router Plugins: A Software Architecture for Next Gen-
eration Routers” Proc. ACM Sigcomm 98, Sep 1998.

[8] S. Deering and R. Hinden. Internet proto-
col, Version 6 (IPv6) specification RFC 1883.
http://ds.internic.net/rfc/rfcl883.txt.

[9] M. Degermark, A. Brodnik, S. Carlsson, and S. Pink.
Small forwarding tables for fast routing lookups. Proc.
ACM Sigcomm 97, October 1997.

[lo] Digital Electronics Corporation. The DEC Alpha.
http://www.dec.com.

[ll] D. Engler and M. Kaashoek. DPF: Fast Flexibible Mes-
sage Demultiplexing using Dynamic Code Generation.
Proceedings of A CM Sigcomm 96., August 1996

[12] Intel. The pentium processor. (www.pentium.com.)

[13] Intel. The Vtune performance measurement tool.
(www.intel.com/design/perftool/vtune)

[14] C. Labovitz, G. Malan, and F. Jahanian. Internet Rout-
ing Instability Proc. ACM Sigcomm 97, October 1997.

[15] T.V. Lakshman and D. Stiliadis. High Speed
Policy-based Packet Forwarding Using Efficient Multi-
dimensional Range Matching. Proc. A CM Sigcomm 98,
Sept 1998.

[16] B. Lampson, V. Srinivasan, and G. Varghese. IP
Lookups using Multiway and Multicolumn Search.
Proc. Infocom 98, March 1998.

[17] S. McCanne and V. Jacobson. The Berkeley Path
Finder. Proc. of Winter USENIX 1993.

[18] N. McKeown, M. Izzard, A. Mekkittikul, B. Ellersick
and M. Horowitz. The Tiny Tera: A Packet Switch
Core IEEE Micro JanfFeb 1997, pp 26-33

[19] J. McQuillan. Layer 4 Switching. Data Communica-
tions, October 21, 1997

[20] Merit Inc. IPMA statistics. (nit. merit. edu.)

[21] P. Newman, G. Minshall, and L. Huston. IP Switching
and Gigabit Routers. IEEE Communications Maga-
zine, January 1997.

[22] S. Nilsson and G. Karlsson. Fast Address Look-Up for
Internet Routers. Proceedings of IEEE Broadband Com-
munications 98, April 1998.

[23] C. Partridge. Locality and route caches. In NSF Work-
shop on Internet Stutistics Measurement and Analysis,
San Diego, CA. USA, February 1996.

[24] F. P. Preparata and M. I. Shamos. Computational Ge-
ometry: An Introduction. Springer-Verlag, New York,
NY, 1985.

[25] H. Samet. The Design and Analysis of Spatial Data
Structures. Addison- Wesley, 1989.

[26] S. Suri, G. Varghese, M. Waldvogel, and V. Srini-
vasan. Layer Four Switching using Rectangle and Tuple
Search. In preparation, 1998.

[271

[281
rag1

[301

[311

[321

V. Srinivasan and George Varghese. Faster IP Lookups
using Controlled Prefix Expansion. Proc. A CM Sigmet-
rics 98, June 1998

Torrent systems, Inc. http://www.torrent.com

P. Tsuchiya. A search algorithm for table entries with
non-contiguous wildcarding. Unpublished report, Bell-
core.

J Turner. Design of a Gigabit ATM Switch. Proc.
SIGCOMM 97, October 1997.

M. Waldvogel, G. Varghese, J. Turner, and B. Plat-
tner. Scalable high speed IP routing lookups. Proc
SPGCOMM 97, October 1997.

L. Zhang et al. RSVP: A New Resource Reservation
Protocol. IEEE Networks Magazine, Sept 1993.

202

