
A less attack-prone, Internet deployment of

iLanga

Submitted in partial fulfilment

of the requirements of the degree of

Bachelor of Science (Honours)

of Rhodes University

Courage Samuel Radu

Grahamstown, South Africa

Abstract

Communication has become very important in the 21st century in a sense that people re-

quire communication services to be always available whenever they need them. As such,

telephony has developed into a ubiquitous service. iLanga is a Voice over IP (VoIP) tele-

phony system built using open source software with Asterisk Private Branch Exchange

(PBX), Kamailio proxy server and MySQL database as main components. It provides its

services over the Internet where there is a mixture of both legitimate users and potential

attackers. This makes the system prone to security attacks. To make it less prone to

attacks, vulnerabilities and threats were identified on the iLanga system and mitigated.

A secure version of iLanga was implemented after considering the previous attacks and

envisioned threats. A simple mechanism was developed using the perl programming lan-

guage to quarantine attackers from legitimate users, allowing users to effectively access

services without causing denial of service. The system also monitors user passwords and

alerts the administrator of any weak passwords via a browser. A step by step guide was

developed on how to deploy a less attack-prone iLanga. Today, iLanga system is serving

its users in a secure and reliable state.

ACM Computing Classification System Classification

“Thesis classification under the ACM Computing Classification System (1998 version,

valid through 2011):”

D.4.6 [Security and Protection]: Authentication

K.6.5 [Security and Protection]: Unauthorized access (e.g., hacking, phreaking)

General-Terms

Security

Acknowledgements

I would like to thank the following individuals and groups for their support and contri-

bution in the completion of this thesis.

The Andrew Mellon Foundation and Rhodes University for their generous schol-

arship which enabled me to further my studies.

Rhodes University and the Department of Computer Science for the opportunity

to complete this Honours Degree.

Mosiuoa Tsietsi for his attentive supervision during the entire year. His contribution is

greatly appreciated in suggestions, knowledge and direction in understanding Voice over

IP (VoIP) telecommunication systems.

Professor Alfredo Terzoli for his co-supervision during the course of the year. His

contribution is greatly appreciated in overall project success.

Convergence Research Group for supporting me with ideas and their team work

support.

My Family and Friends for supporting me during my studies. In particular Julia Radu

and Wellington Radu for their love, encouragement and everyday support.

I would like to also acknowledge the financial and technical support of Telkom, Tellabs,

Stortech, Eastel, Bright Ideas Project 39 and THRIP through the Telkom Centre of

Excellence in the Department of Computer Science at Rhodes University.

Contents

1 Introduction 1

1.1 Problem statement . 1

1.2 Project goals . 2

1.3 Document structure . 2

2 Literature Review 4

2.1 Session Initiation Protocol (SIP) . 4

2.2 Password Security . 5

2.2.1 Attacks on password security . 6

2.2.2 Guidelines for creating good passwords 6

2.3 Brute force attacks . 7

2.3.1 Ways to mitigate brute force attacks 8

2.4 Denial of Service (DoS) and Distributed Denial-of-Service (DDoS) attacks . 8

2.4.1 DoS attack . 8

2.4.2 DDoS attack . 9

2.4.3 Ways to mitigate DoS and DDoS 9

2.5 Toll fraud . 9

i

CONTENTS ii

2.5.1 Ways to mitigate toll fraud . 10

2.6 Eavesdropping . 10

2.6.1 Ways to mitigate eavesdropping . 10

2.7 Spam over Internet Telephony (SPIT) . 10

2.7.1 Ways to mitigate Spam over the Internet 11

2.8 Secure Shell (SSH) authentication . 11

2.9 Firewalling . 11

2.10 System Hardening . 12

2.11 Summary . 13

3 iLanga System 14

3.1 Introduction . 14

3.2 High level system architecture . 14

3.3 Low level system architecture . 15

3.4 Summary . 17

4 Security Analysis and Implementation 18

4.1 Methodology . 18

4.2 A Secure Asterisk Installation . 20

4.2.1 Run Asterisk as a non-root . 20

4.2.2 Changing the default port . 20

4.3 Public Key Authentication for SSH login 21

4.4 Securing User Passwords . 22

4.5 Securing User Accounts . 23

CONTENTS iii

4.6 Dialplan Security . 23

4.6.1 Default context . 24

4.6.2 Dialplan injection . 24

4.7 Monitoring suspicious events . 25

4.7.1 Banning offending IP addresses . 25

4.8 The less attack-prone iLanga . 28

4.9 Summary . 30

5 Experiments and Discussion 31

5.1 Introduction . 31

5.2 Service discovery on the server and an IP phone 32

5.2.1 UDP scan . 32

5.2.2 TCP scan . 32

5.2.3 IP phone scan . 33

5.3 Experiments on Asterisk . 34

5.3.1 Enumeration attempt with variable alwaysauthreject=no 34

5.3.2 Enumeration attempt with variable alwaysauthreject=yes 35

5.4 Enumerating valid usernames on Kamailio server 36

5.5 Summary . 38

6 Conclusion and Future Work 39

6.1 Summary of work . 39

6.2 Future Work . 40

6.2.1 Enabling password aging . 40

6.2.2 Modifying Kamailio server responses 40

6.2.3 Monitoring Call Detail Records (CDR) 41

6.2.4 Enabling a port knocking mechanism 41

6.3 Summary . 42

A How to install Asterisk as non-root 46

B How to configure public key authentication 48

C Perl Script that blocks offending IP Addresses 50

D A concise guide on how to secure iLanga 53

List of Figures

2.1 SIP setup Source: [1] . 5

2.2 Packet filtering process. Source: [2] . 12

3.1 iLanga system overview . 15

3.2 iLanga low level architecture . 16

4.1 Iterative approach . 19

4.2 Log file . 21

4.3 Monitoring password strength . 22

4.4 Quarantining offending IP address . 26

4.5 Code snippet from the perl script . 27

4.6 Summary of blocked IP addresses . 28

4.7 The less attack iLanga . 29

5.1 UDP scan . 32

5.2 TCP scan . 33

5.3 IP phone scan . 33

5.4 403 Forbidden - Server Response . 36

5.5 401 Unauthorised - Server Response . 37

v

Chapter 1

Introduction

In our modern society telephony has developed into an ubiquitous service. People com-

municate anytime and anywhere via telephony. As such, telephony has moved to the

Internet where everyone can easily access it.

Researchers at Rhodes University developed a VoIP telephony system named iLanga

[3]. This system is essentially a complete, cost effective, computer-based Private Branch

Exchange (PBX) that enables registered users, both on campus and on the open Internet,

to communicate. As a VoIP system, iLanga has a rich set of features that includes

interactive voice response, call conferencing, music on hold, support for multiple devices

for a single user and many more.

As an open source system designed to facilitate service delivery over the Internet, iLanga

is subject to a mixture of both legitimate users and attackers. This makes security a very

important issue to consider. In this project, we will carefully look into how security can

be considered and be prioritised, in order to deploy a reliable communication system.

1.1 Problem statement

In the past, iLanga has been compromised and at the beginning of this project it was shut

down to avoid further exploitation rendering it unavailable to its users. The problem can

be largley attributed to malicious elements on the Internet. The most prevalent threats

to VoIP deployments today are the same security threats that exist in traditional data

networks [4, 5]. Among these threats are brute force attacks, Denial of Service (DoS)

1

1.2. PROJECT GOALS 2

and Distributed Denial of Service (DDoS). Brute force attack is a technique whereby an

attacker simply guesses username and password until he finds a combination that works.

DoS and DDoS attack are characterised by an attempt to prevent the legitimate use of a

service. Additionally, in the telephony world, there is a new threat known as Spam over

Internet Telephony (SPIT) which refers to unsolicited bulk calls or instant messages [6].

1.2 Project goals

The primary goal of this project was to secure iLanga from attacks such as those that

have been experienced in the past and to identify other potential threats to it. We

tried to mitigate these threats by considering the traditional aspects of security, that

is, Confidentiality, Integrity and Availability (CIA). Confidentiality ensures that only

authenticated users can use the system and that their information is not disclosed to

unauthorised individuals. Integrity ensures that the system behaviour and data are not

modified without being detected. Availability ensures that the telephony system is always

available for use by legitimate users when they need to communicate.

The secondary goal was to develop a guide with best security practices that will apply to

iLanga and similar VoIP systems. This guide will help administrators to carefully consider

security when deploying such systems.

1.3 Document structure

The remainder of this thesis is organised into the following chapters:

Chapter 2 discusses possible attacks on VoIP systems and suggested solutions.

Chapter 3 describes the high and low level architectures of the iLanga system.

Chapter 4 discusses the security threats identified on the iLanga system and the counter-

measures that were implemented.

1.3. DOCUMENT STRUCTURE 3

Chapter 5 describes experiments that were carried out, followed by a discussion on the

results.

Chapter 6 presents a summary of this thesis and suggests areas of future work.

Chapter 2

Literature Review

This chapter reviews some important concepts in telecommunications that will help the

reader undestand the context of our work. It also discusses some security threats that

affect VoIP systems and possible countermeasures to mitigate them.

2.1 Session Initiation Protocol (SIP)

SIP is a protocol for initiating, modifying, and terminating interactive multimedia sessions

[7, 8]. This protocol is not used for media transport but rather for session setup. It differs

from other protocols like H.323, which specifies all aspects of signalling, media, features,

services, and session control [7]. The primary function of SIP is session initiation even

though it has other important functions such as user location, and user availability [8].

4

2.2. PASSWORD SECURITY 5

Figure 2.1: SIP setup Source: [1]

Figure 2.1 shows a SIP User Agent Client making an INVITE request to a SIP User Agent

Server. The server response 200 OK shows that user 3004 is available and has answered.

After acknowledgement RTP handles the media. This is a demonstration of a simple SIP

call initiation. After communication is done, the session is terminated by a BYE method.

2.2 Password Security

Passwords are used to verify a user’s identity. Therefore, passwords used in authentication

processes of any critical system should be strong to avoid them being easily cracked

[9]. Generally, the most important part of securing computer systems is securing user

passwords [9]. Users are generally not good at creating strong passwords, especially if

there are no guidelines on how to create them. They tend to pick short passwords that

are easy to remember. Such kinds of passwords are easy targets for hackers. As mentioned

in [9] the entire system’s security can be endangered by one weak password within that

system.

2.2. PASSWORD SECURITY 6

2.2.1 Attacks on password security

• According to Singh [10], the following are known methods of attack on password

security.

1. Observation - an intruder can watch while a password is being typed.

2. Eavesdropping - an intruder can record the interaction between the user and

the system trying to determine the password.

3. Cryptanalysis - an intruder copies a password file and analyses it.

4. Password search - a program can be used to carry out an exhaustive search for

a password of a given length.

2.2.2 Guidelines for creating good passwords

A case study on Turkish users showed that if users are to create their passwords without

any restrictions on the characteristics of key words or without any guidelines for strong

characteristics, they pick the ones that will be easily remembered and are short [9]. Such

passwords are then easy targets for password crackers or system hackers [11, 9].

• Below are guidelines for users in helping them to create strong passwords [12] :

1. Do not use only words such as “john” or numbers such as “1234” or dictionary

words such as “jacaranda”.

2. Do not use words in foreign languages because password cracking programs

check against word lists that encompass dictionaries of many languages.

3. Do not use the same password for all machines. If one machine is compromised

then other machines are safe.

4. Do not write down your password. The best way is to memorise it.

5. Do not use personal information when creating a password. If an attacker

knows your identity, then your password can be easily deduced. Avoid using

your date of birth or your name, etc

6. Do not invert recognisable words. Inverting a bad password will never make it

secure. An example nauj which is juan in inverted form.

In order to enhance password strength, the following should be included: at least the

password should be more than 12 characters, a mixture of upper and lower case characters,

digits between 0-9, and special characters such as $, #,&,@.

2.3. BRUTE FORCE ATTACKS 7

2.3 Brute force attacks

In a brute force attack, the attacker simply tries to guess username and password com-

binations until he finds one that works. Weak passwords are easily guessed. Automated

tools can be used for brute force attacks that can make thousands of requests per minute

with credentials generated from a large list of possible values [13]. The large lists can be

online dictionaries or text files with many character combinations.

According to Federal Bureau of Investigation (FBI) Situational Intelligence Report [14]

the following two cases were reported:

1. “In March 2009, the Charlotte Division was notified of an intrusion into a VoIP

server located at an undisclosed corporation in Greenville, South Carolina. It was

determined that the intruder, using a Romanian based IP address, first conducted a

port scan and determined port 5060 was utilized on the compromised server. Port

5060 is the standard port used for Session Initiation Protocol (SIP). SIP is respon-

sible for the setup, modification, and termination of sessions in an IP-based network

and is typically the protocol used for VoIP servers. Then the hacker conducted a

brute force attack and was able to crack the passwords to two extensions on the

VoIP server due to weak passwords. The logs show several password attempts per

second, indicating a script was used by the hacker. The hacker then proceeded to

make 1,376 calls from the compromised phone extensions attempting to trick victims

into providing their bank account information.”

2. “In February 2009, a non-profit organization located in Charlotte, North Carolina,

experienced a computer intrusion into their VoIP server. A review of the server logs

revealed IP addresses resolving to France and Florida as being responsible for the

intrusion. The intrusion took place through port 5060 and compromised SIP on a

server running Trixbox Community Edition. After gaining access, the hackers made

approximately 1,850 calls from the compromised system. The calls were made to

customers of small regional banks soliciting credit card information via touchtone

phone. After victims provided their account information, “money mules” across the

country made ATM withdraws using the compromised accounts and sent a portion

of the proceeds to Romania.”

In the report analysis of the two cases it was noted that:

• Both attacks were made through port 5060.

2.4. DENIAL OF SERVICE (DOS) AND DISTRIBUTED DENIAL-OF-SERVICE
(DDOS) ATTACKS 8

• The intruders set up additional extensions on the compromised VoIP servers.

• They then notified victims of a problem with their financial accounts through auto-

mated phone calls or mass text messages to cell phones.

Overrally, this shows the importance of using a different port number.

2.3.1 Ways to mitigate brute force attacks

Blake’s paper [5] proposed the use of intrusion detection and other monitoring tools is the

best way to detect brute force attacks. He added that checking logs for irregularities such

as multiple log-on attempts. According to Digium the company that created Asterisk

PBX system [15] fail2ban can be used as a reactive way to prevent brute force attempts.

2.4 Denial of Service (DoS) and Distributed Denial-

of-Service (DDoS) attacks

2.4.1 DoS attack

A DoS attack is characterised by an explicit attempt to prevent the legitimate use of a

service [16, 17]. A network based DoS attack can be achieved in two basic attacks methods

[17] :

1. By consuming available resources

2. By bringing the system to a faulty state

These two methods can be combined to consume the available resources by bringing several

system processes into a state which needs a lot of resources. Limiting the availability by

bringing the system into a faulty state requires compromising either the whole system or

only a particular process [17].

A DoS attack by flooding creates resource exhaustion, long term busy signals, and force

disconnections of in-session calls. Additionally, brute force attacks cause CPU depletion

thus causing a DoS condition.

2.5. TOLL FRAUD 9

2.4.2 DDoS attack

A distributed denial of service attack uses multiple hosts to prevent legitimate users from

using a service [13]. A DDoS attack is achieved the same way as a DoS attack but the

difference is that in a DDoS attack there are multiple hosts. Attackers recruit multiple

hosts by:

1. Automatically scanning remote machines, looking for security holes [13]. A discov-

ered vulnerability is then exploited with attack code.

2. Distributing attack software by E-mail attachments and other digital means.

2.4.3 Ways to mitigate DoS and DDoS

In [13] the following systems are suggested for use:

1. Applications that download and install security patches

2. Firewall systems

3. Intrusion detection systems

4. Worm defense systems

The above mentioned systems should enable the victim to endure attack attempts without

denying service to legitimate clients. This is done either by enforcing policies for resource

consumption or by ensuring that abundant resources exist so that legitimate clients will

not be affected by the attack.

2.5 Toll fraud

Toll fraud refers to unauthorised access and use of a VoIP network which involves the

establishment of toll bearing calls, especially to international toll numbers [5]. It is a

serious threat because it utilises the organisations bandwidth and also incurs heavy costs.

2.6. EAVESDROPPING 10

2.5.1 Ways to mitigate toll fraud

Blake’s paper [5] mentioned that checking VoIP logs can bring to light irregularities such

as international calls made at odd hours.

2.6 Eavesdropping

Eavesdropping on VoIP networks or calls takes place when unauthorised third parties mon-

itor call signal packets. By eavesdropping, third parties can learn user names, passwords,

and phone numbers, thereby gaining control over dial plans, voicemail, call forwarding,

and billing information [5]. More importantly, third parties may also gain access to confi-

dential business and personal information by eavesdropping on actual VoIP conversations.

2.6.1 Ways to mitigate eavesdropping

Virtual Local Area Network (VLAN) can be used to protect conversations from being

eavesdropped [5]. This is because a VLAN is a closed loop of servers or computers that

does not allow any other computer access to its network or facilities.

2.7 Spam over Internet Telephony (SPIT)

Spam is well known from the email paradigm. In general it refers to any unsolicited

communication [6]. However, in telephony, as identified in [6] three different forms of

SPIT exist:

1. Call SPIT, which is defined as a bulk unsolicited set of session initiation attempts

in order to establish a multimedia session.

2. Instant Message SPIT, which is defined as a bulk unsolicited set of instant messages.

3. Presence SPIT, which is defined as a bulk unsolicited set of presence requests in

order the initiator of SPIT to become a member of the address book of a user or

potentially of multiples users.

2.8. SECURE SHELL (SSH) AUTHENTICATION 11

2.7.1 Ways to mitigate Spam over the Internet

SPIT can be mitigated by blacklisting and whitelisting users especially if it is call SPIT

[18]. If it is instant message SPIT a proxy can be used to open the message and see the

contents and determine if it is SPIT or not before forwarding to the end users.

2.8 Secure Shell (SSH) authentication

According to Ubuntu documentation [19] use of public key authentication instead of

passwords especially for SSH servers that are visible on Internet is more secure. With

public key authentication, every computer has a public and a private key. As further

stated, key-based authentication has several advantages over password authentication,

for example the key values are significantly more difficult to brute force attack [19]. SSH

can use either Rivest-Shamir-Adleman (RSA) or Digital Signature Algorithm (DSA) keys

of which RSA is recommended over DSA because DSA has been seen as less secure in

recent years [19].

2.9 Firewalling

By instituting a firewall [20], unauthorised access can be prevented to services at the

network level before an attacker is given the chance to exploit them. Netfilter and IPtables

are integrated in the Linux kernel since 2.4.x series and later series of kernels [2].

The firewall makes packet filtering process by following specified rules. There is flexibility

to add, edit and remove the rules. The rules are grouped together into chains. The kernel

defines three chains by default (INPUT, FORWARD, OUTPUT chains), but new chains

can be specified and linked to the predefined chains [2, 20]. Figure 2.2 shows the packet

filtering process.

2.10. SYSTEM HARDENING 12

Figure 2.2: Packet filtering process. Source: [2]

• In general, firewalls as stated for example in [2, 20] offer the following three core

benefits especially to administrators;

1. Help understand where the threats to your system are coming from

2. It gives administrator total control over firewall configuration and packet fil-

tering.

3. Administrator can make own rules that will suit specific needs

2.10 System Hardening

A very important step in securing a Linux system is to determine the primary function

or role of the server [11]. When the primary function is determined, it is then important

to know what is on the system. A fresh installation of a system result in some unused

software packages and these should be removed. For instance there is no point of keeping

Apache server if it is not used. Removing unnecessary software packages means that there

are fewer packages to update when security alerts are released. Additionally, unnecessary

packages can be potential vectors for attackers especially when they reside without being

updated.

2.11. SUMMARY 13

2.11 Summary

This chapter described the main attacks that iLanga is likely to suffer from when de-

ployed. It described how certain attacks are achieved and possible ways to mitigate them.

These attacks include brute force attacks, DoS and DDoS, eavesdropping and SPIT. The

ways to mitigate have been discussed as preventive and reactive measures. Preventive

measures ensure that the system is secure by the use of strong passwords, use of public

key authentication, use of firewall, etc. Reactive measures include the use of Intrusion

Detection Systems.

Chapter 3

iLanga System

3.1 Introduction

This chapter describes the iLanga system and its software components. The hardware

components are not of major interest so they are not discussed. This is because the

Asterisk PBX server can run on any PC (in its minimal configuration) [3].

3.2 High level system architecture

Figure 3.1 shows a high level overview architecture of iLanga. This is a generic overview of

what the system looks like. The server is the main hardware component and has Asterisk

installed on it. Asterisk is software that turns an ordinary computer into a communica-

tions server [21]. It receives requests from users and processes them accordingly. Asterisk

server is connected to the public Internet via campus network. Moreover, the server is

connected to Telkom (the South African fixed line operator) via Integrated Service Digital

Network (ISDN) connection. The server acts as a gateway between the PSTN and the IP

based network. Two more servers are also installed and these are Kamailio proxy server

and MySQL database server.

14

3.3. LOW LEVEL SYSTEM ARCHITECTURE 15

Figure 3.1: iLanga system overview

Kamailio proxy server serves three main purposes 1) it allows parallel forking 2) it is used

for load balancing and 3) it is used for authentication. Parallel forking allows a single

user to use the same extension on different devices in different locations. If a caller dials

that extension, the proxy server forks the request and rings all the devices. When one

device is picked, the rest will be terminated. Asterisk lacks this functionality so it is an

advantage to have Kamailio to serve this purpose in the system.

MySQL server is used to store user information. Any other database can be used for this

purpose. User information includes usernames, passwords, email addresses and so on. In

iLanga, MySQL is an ideal database for storing user and information as well as billing

information because of its flexibility and scalability.

3.3 Low level system architecture

Figure 3.2 shows a low level iLanga system overview.

3.3. LOW LEVEL SYSTEM ARCHITECTURE 16

Figure 3.2: iLanga low level architecture

The main component is Asterisk and is found at the centre. MySQL database is at the

top right corner. Kamailio, which was drawn from previous project known as Sip Express

Router (SER) is just above Asterisk. Asterisk, MySQL and Kamailio servers run as super

users. The three servers are all interlinked. iLanga has a frontend that allows users to

register and manage their accounts. The frontend is deployed on an Apache web server.

OpenGK is no longer in use, but was used as a gateway between asterisk and H.323

endpoints.

The protocols that are of interest are the SIP and Real-Time Transport protocol (RTP).

SIP is responsible for the setup, modification, and termination of sessions in an IP based

network while RTP is responsible for transporting the media. These protocols are well

discussed in Chapter 2. Generally, the components are connected to each other in a

complex way.

3.4. SUMMARY 17

3.4 Summary

The iLanga architecture shows the various components that constitute it. As show, it is

made up of open software, therefore, it is a low cost VoIP system that can be deployed at

tertiary institutions and small business enterprises. It is made up of open source software.

The only hardware extensions required is the ISDN card. The low level architecture shows

some complexity in the way which components interfaces with each other. This might

cause some security issues as well as management of the system.

Chapter 4

Security Analysis and

Implementation

This chapter discusses security threats that have been identified on the iLanga system and

possible countermeasures to mitigate them. The final section shows a less attack-prone

deployment.

4.1 Methodology

We used an iterative approach to secure the system. The first step was to record versions

for each component as part of the preliminary phase. These versions would help to

find any security vulnerabilities that have been posted on the websites of that particular

component. For instance Asterisk has a recent project known as the Asterisk Project

Security Advisory found on www.asterisk.org which releases vulnerabilities discovered

and the affected versions.

18

4.1. METHODOLOGY 19

Figure 4.1: Iterative approach

Figure 4.1 shows the representation of the iterative approach we used in mitigating the

threats. Step 1 was to identify a vulnerability or threat from the system. It was followed

by a search for a countermeasure. The countermeasure might require a configuration or,

a patch or perhaps building a new solution. The countermeasure was then applied, and

tested. After testing, the countermeasure was the evaluated to see if it is worth deploying.

If it was not worth deploying, then another countermeasure was considered. This was an

on-going process in the building of the system security.

In order to understand how the system works, we had to replicate the iLanga system on

a test server with the following components:

Hardware components:

1. Server: Processor – Intel(R) Core(TM) i7 CPU @2.93Ghz , RAM – 4.00 GB , and

System Type – 64-bit Operating System

2. IP Phone: AT-320 H323 v1.39

3. Laptop/Desktop: Any

4.2. A SECURE ASTERISK INSTALLATION 20

Software components:

1. Operating System: Ubuntu linux 10.10 maverick

2. Servers: Asterisk v1.6.0.6 , Kamailio v2.0, MySQL v5.5

3. Softphone: Twinkle v1:1.4.2-2build1

The replicated system acted as a test bed where we carried out all the experiments before

moving the countermeasures to the production machine.

4.2 A Secure Asterisk Installation

4.2.1 Run Asterisk as a non-root

When installing Asterisk, it is good practice to run it as a non-root [22, 23]. By default,

Asterisk is configured to run as root, that is, as a super user. This is useful so that if the

Asterisk is compromised, it cannot be used to take over the entire machine.

It is possible to run Asterisk with reduced privileges by adding a new user account on the

system. Like any account, a username and password will be provided. When Asterisk is

reconfigured to run as a normal user, it will then need permissions to be able to read and

write certain files. Some files need to be writable so that Asterisk will be able to append

lines for instance registration status, while other files have to be readable for instance the

users.conf. A step by step procedure on how to install Asterisk as a non-root is given in

Appendix A.

4.2.2 Changing the default port

Port 5060 is the standard port used for SIP signalling. Changing the default port to

another arbitrary port will add a smaller layer of protection, as discussed in Chapter 2.

This is because the default port is well known and that can make the attacker’s work

easy. Changing the default port will thus add an extra layer of security and will force

the attacker to work harder in order to determine the properties of the system. This

intervention however will require users to alter the server settings on their phones.

4.3. PUBLIC KEY AUTHENTICATION FOR SSH LOGIN 21

4.3 Public Key Authentication for SSH login

Figure 4.2 shows a summary from the actual log file of a Linux server. It shows attempts

to crack the root password by intruders. This extract was made in June 2011 from the

iLanga production machine before it was shut down to avoid further exploitation. From

the extract below, on June 16 2011 at 12:16pm an intruder with IP address 95.141.193.46

made 40 attempts guessing the root password. On June 17 2011 from 02:27am until

02:42am an intruder with IP address 124.205.190.217 made several attempts with different

usernames such as prueba, services, droguri, sshadmin, abcs, sshdu, ospite, postgres,

Duane, Oscar, VPN, info, gnats, and Rome.

From the /var/log/auth.log.1log file June 12 13:17 Failed password for

root from 109.237.214. 6 attempts

June 12 22:59 Failed password for root from 122.225.96.156 6attempts

June 16 12:16 Failed password for root from 95.141.193.46 about 40

attempts Failed password for invalid user test from 95.141.193.46 3

attempts Failed password for invalid user nagios 2 attempts Failed

password for invalid user postgres 2 attempts Failed password for

invalid user oracle 1 attempt

June 17 02:27 until 02:42 Failed password for root from 124.205.190.217 6

attempts Follwed by Single attempts for users prueba, services, droguri,

sshadmin, abcs, sshdu, ospite, postgres,Duane, Oscar, VPN, info, gnats,

Rome

June 17 10:16 Server listening on 0.0.0.0 port 22 Received signal 15

terminating

June 18 17:08 until 17:10 Reverse mapping checking getaddressinfo for

airtelbroadband.in [182.79.254.14] failed POSSIBLE BREAK IN ATTEMPT

Invalid user test from 182.79.254.14

June 19 03:46 until 03:53 Similar attack to June 17 02:27 Invalid user

from 38.110.72.164 with usernames root, eb, nagios, postgres etc

Figure 4.2: Log file

Secure Shell (SSH) is a network protocol used to securely access a remote machine. It

allows secure data communication and command execution. SSH uses public key authen-

tication if necessary. Public key authentication is highly recommended since the server

is visible over the Internet [19]. The goal is to prevent random username and password

4.4. SECURING USER PASSWORDS 22

guesses before the attacker finds the correct combination. Appendix B show how to setup

SSH so that you can securely login without having to provide a password. With public

key authentication, private and public keys are generated. The public key is then trans-

ferred to the server. The private key will remain on the client side. When logging in, the

private key is used instead of providing the password. If the private key matches with the

public key, after a methematical computation, then it gets authenticated. The length of

the private key is relatively large and thus makes it hard to use brute force methods on

it.

4.4 Securing User Passwords

In order to make phone calls, one needs to be a registered user. Registered users are

uniquely identified by a username and a password. Asterisk is not programmed to detect

weak passwords, thus users end up using weak passwords. This weakness is within the

system because there are no guidelines for creating strong passwords that users can follow.

Additionally, when the administrator creates a new user account with a weak password,

the system does not complain.

To mitigate against this, we designed a perl script that checks the strength of passwords

for users and alerts the administrator of any weak passwords via the browser. Figure 4.3

shows the password strength for three registered users. This allows the administrator to

always be alert of any weak passwords within the system.

Figure 4.3: Monitoring password strength

The perl script looks for the following features in a password:

1) Length (at least 12 characters)

4.5. SECURING USER ACCOUNTS 23

2) Lowercase characters (at least two)

3) Uppercase characters (at least two)

4) Digits 0-9 (at least two)

5) Special character eg #,$,ˆ, ,@, and & (at least one)

The system should always have strong passwords that are hard to guess. The features

above enhance the strength of passwords.

4.5 Securing User Accounts

Since the Asterisk PBX is pointing to the public Internet, it is most likely to be scanned

for valid user accounts. The intruder typically, checks for common usernames and then

goes for numbered accounts, since it is common for administrators to name SIP accounts

with the same name as the extensions on the PBX. When enumerating usernames, the

attacker tries to register a phone using different usernames. A server response will enable

the attacker to determine whether the username exists or not.

Setting the variable alwaysauthreject=yes in the sip.conf file will resolve this problem.

This will prevent the attacker from enumerating the usernames on the server. Addition-

ally, the use of non-numeric usernames for VoIP accounts will make them harder to guess

[23].

4.6 Dialplan Security

The Asterisk dialplan is another area where security should be considered important. In

Asterisk, a dialplan is the most important part of the Asterisk system []. It defines how

Asterisk handles incoming and outgoing calls. The configuration file extensions.conf

contains the dialplan with all valid extension numbers. A new installation of Asterisk

has the extensions.conf file installed by default. Modifying this default file by adding

new extensions is must be done carefully because some of the dialplan syntax has security

risks. One can use the default extensions.conf file as a reference. A good approach is

to create a new file and populate it with contents. Basically, the dialplan looks like this:

4.6. DIALPLAN SECURITY 24

[general]

some settings go here

[globals]

global variables go here

[context1]

extension 1, priority 1, application

extension 1, priority 2, application

[context2]

extension 2, priority 1, application

extension 2, priority 2, application

4.6.1 Default context

There is a context known as the default context. The default context should be secure.

It should not have extensions that can cost the organisation money.

4.6.2 Dialplan injection

A dialplan should be built with great care in order to prevent one of the more recent di-

alplan vulnerabilities that have been discovered [23, 24]. The channel variable ${EXTEN}
is commonly used in the dialplan. If this variable is used with wildcard pattern matches,

it can lead to possible string injection vulnerability. The following example shows the use

of a wildcard match in a dialplan.

exten => X.,1,Dial(SIP/${EXTEN})

It may be possible for an attacker to craft an INVITE which sends data such as

300&DAHDI/g1/4165551212 which would create an outgoing channel leg that was not

originally intended. If evaluated the extension will become

exten => X.,1,Dial(SIP/300&DAHDI/g1/4165551212)

If the system has an interface to the PSTN installed and configured, this will cause the

call to go out on the number chosen by the attacker, even though the administrator did

not grant access to that caller. This will probably cost the organisation.

Administrators or developers should be careful on how foreign data will flow in the system

when designing the dialplan. This problem can be solved by filtering string data from

4.7. MONITORING SUSPICIOUS EVENTS 25

external sources. This can be done using the FILTER() dialplan function. All incoming

context data should be filtered before it starts to flow in the system. Strict pattern

matching can be used if the length of the extension is known before hand, for example

exten => XXXX,1,Dial(SIP/${EXTEN}).

4.7 Monitoring suspicious events

It is highly recommended that an intrusion prevention mechanism be used in order to

protect VoIP systems like iLanga. Fail2ban [23] can be used as a basic countermeasure to

quarantine offending IP addresses. Fail2ban bans an IP that makes too many failed login

attempts. It then updates the firewall to reject that particular IP address.

It is useful to alert the system administrator about the status of blocked IP addresses.

Fail2ban has a useful functionality that sends a mail everytime it bans an IP address.

Nevertheless, this functionality requires a Mail Transfer Agent (MTA) like Postfix [23] to

be installed in order to work. While it is beneficial to receive a blocked IP address this

has some weaknesses. Firstly, the administrator might receive thousands of blocked IP

addresses in a day which does not give extra information like the number of attempts

made by each particular IP address. Secondly, there is no way the administrator can tell

if the blocked IP is being used by a legitimate user. Thirdly, the option ignoreip = ,

where one can specify IP addresses that should never be blocked especially the server IP

can be a risk if the attacker spoofs that server IP address.

4.7.1 Banning offending IP addresses

We developed a perl script that behaves the same way as Fail2ban in order to suite our

domain problem. This script is an extension of a perl script originally created by an

Asterisk consulting company Teamforest [25]. Asterisk PBX comes with an inbuilt mini

web server that is enabled so that the administrator will be able to view the blocked IP

addresses via the browser. An administrator will have easy access since the browser is

accessible everywhere.

The program scans the asterisk.log log file, and looks for particular patterns. In other

words, the program has a predefined pattern to watch, otherwise it will not know when

to block or not. Figure 4.5 shows what the program watches for. Line 19 shows that

4.7. MONITORING SUSPICIOUS EVENTS 26

Figure 4.4: Quarantining offending IP address

if the program has to watch for “Wrong password”, line 22 shows that it has to watch

for “No matching peer found” and so on. The program will keep track of the number of

times such patterns appear for each IP. If the counter exceeds six, it sends an action to

the firewall, thereby blocking the IP address. For the full program, refer to appendix C.

4.7. MONITORING SUSPICIOUS EVENTS 27

Figure 4.5: Code snippet from the perl script

The perl script is set in the crontab so that it can run in the background. Crontab is a

Linux utility that allows tasks to be automatically run in the background of the system

at regular intervals. The minute, hour, day, month and weekday parameters which your

program has to be executed should be specified. To add a cron job, you edit the crontab

file. Once you save the file, the crontab is running. The command #crontab -e will

allow one to edit the contab file. Adding the following line will allow the program to be

executed after every minute.

*/1 * * * * perl /home/courage/Desktop/check.pl &> /dev/null

In this statement */1 means execute the program after every one minute. The perl

means that it is a perl program. The path to the program being executed is given by

/home/courage/Desktop/check.pl. Every time the job finishes executing, the crontab’s

way of notifying is sending an email. In order to disable this feature we use /dev/null.

This essentially writes the email out to nowhere.

An administrator can view this information anywhere via the browser. Figure 4.6 shows

the web interface with three blocked IP addresses and the number of attempts made.

4.8. THE LESS ATTACK-PRONE ILANGA 28

Figure 4.6: Summary of blocked IP addresses

4.8 The less attack-prone iLanga

Figure 4.7 shows the less attack-prone iLanga architecture after all implementation.

4.8. THE LESS ATTACK-PRONE ILANGA 29

Figure 4.7: The less attack iLanga

The secure implementation shows the use of the inbuilt Linux firewall (iptables) working

with the perl script blocking offending IP addresses, the Asterisk PBX server running as a

non-root, variable alwaysauthreject=yes, the administrator can SSH login using private

key, all user passwords are strong, a carefully designed diaplan and the administrator can

monitor security related information via the browser.

4.9. SUMMARY 30

4.9 Summary

Due to the nature of the design of the system, it is prone to attacks that originate from

the Internet. The threats identified on the iLanga system are more similar to the security

threats that exist in traditional data networks. These threats are not carefully considered

by administrators and developers when developing or deploying systems. Some security

features are inbuilt but must be enabled in order to protect the system. This chapter

includes some basic security features from initial installation of the Asterisk PBX up to

a point where a basic system was built to enhance the security.

The most important things to do are to run the Asterisk PBX as a non-root, change

the default port 5060, making sure all user passwords are strong, setting the variable

alwaysauthreject = yes, creating a diaplan with great care, configure public key au-

thentication for SSH login, and quarantining offending IP addresses. The web based user

interface eases administration and is accessible everywhere.

Chapter 5

Experiments and Discussion

5.1 Introduction

Information gathering is one of the most powerful tools at the attacker’s disposal [4]. This

chapter will discuss a few experiments using Nmap for information gathering. Nmap is an

open source tool for network exploration and security auditing [26]. Experiments carried

out using Nmap are intended to show the amount of information that is visible to the

Internet that can be used by an attacker.

This chapter will also discuss the use of SIPvicious suite. SIPvicious is a suite of tools

that is used to audit SIP based VoIP systems [27]. It has three tools that are of interest

to this work: svmap, svwar, and svcrack. Svmap is a sip scanner that lists SIP devices

that are found on a particular IP range. Svwar is used to identify active extensions on a

PBX. Svcrack is an online password cracker for a SIP PBX. We used SIPvicious tool to

carry an audit on our test bed discussed in Chapter 4.

Furthermore, this chapter will discuss the use of the REGISTER method for enumerating

usernames by analysing server responses. Twinkle softphone was used to carry out these

experiments.

We chose the above tools because they are open source and they suite the goal of our

investigation. There are certainly other tools that we could have used.

31

5.2. SERVICE DISCOVERY ON THE SERVER AND AN IP PHONE 32

5.2 Service discovery on the server and an IP phone

5.2.1 UDP scan

The objective of this experiment was to determine the UDP ports that are open and the

service they provide.

Figure 5.1: UDP scan

Discussion:

Figure 5.1 provides a snapshot of the results obtained from a UDP scan. The results show

that port 5060 is open | filtered and it provides a SIP service. This port is used by

Asterisk. According to Nmap’s man page definition, open | filtered means that Nmap

is unable to determine whether a port is open or filtered and this occurs for scan types in

which ports give no response [4].

5.2.2 TCP scan

The objective of this experiment was to determine the TCP ports that are open and the

service they provide.

5.2. SERVICE DISCOVERY ON THE SERVER AND AN IP PHONE 33

Figure 5.2: TCP scan

Discussion:

Figure 5.2 provides a snapshot of the results obtained from a TCP scan. The results show

that three ports are open and none of these are used by Asterisk.

5.2.3 IP phone scan

Figure 5.3: IP phone scan

Discussion:

Figure 5.3 provides a snapshot of the results obtained from an IP phone scan. The results

show that 1000 ports are open | filtered. Furthermore, we can see the MAC Address

of the phone and the company that created the phone, Palmmicro Communications.

5.3. EXPERIMENTS ON ASTERISK 34

Port scanning will help an attacker to determine which services are running on your

server as well as the ports they are listening on. The attacker can further investigate the

versions of the applications running a service. For instance, Figure5.2 show that openSSH

is version 4.3 . The attacker can use this version to find any vulnerability that could have

been reported and exploit it. All open ports should be filtered and unnecessary services

should be disabled.

5.3 Experiments on Asterisk

The following experiments will demonstrate the importance of setting the variable

alwaysauthreject=yes. This prevents the attacker from enumerating valid users on

Asterisk [24].

5.3.1 Enumeration attempt with variable alwaysauthreject=no

Step 1: Device identification

courage@courage-desktop:~/Desktop/sipvicious$./svmap.py 146.231.123.15

WARNING:DrinkOrSip:could not bind to 0.0.0.0:5060 - some process might

already be listening on this port. Listening on port 5061 instead

| SIP Device | User Agent | Fingerprint |

| 146.231.123.15:5060 | Asterisk PBX 1.6.0.6 | Asterisk /

Linksys/PAP2T-3.1.15(LS) / Asterisk PBX

Step 2: Scanning for valid users

courage@courage-desktop:~/Desktop/sipvicious$./svwar.py -e 6000-6005

146.231.123.15

WARNING:TakeASip:could not bind to :5060 - some process might already be

listening on this port. Listening on port 5061 instead

| Extension | Authentication |

6002	reqauth
6000	reqauth
6001	reqauth

5.3. EXPERIMENTS ON ASTERISK 35

Step 3: Cracking the password

courage@courage-desktop:~/Desktop/sipvicious$./svcrack.py -u6002

-r1-6005 146.231.123.15

WARNING:ASipOfRedWine:could not bind to :5060 - some process might

already be listening on this port. Listening on port 5061 instead

/home/courage/Desktop/sipvicious/helper.py:387: DeprecationWarning: the

md5 module is deprecated; use hashlib instead import md5

| Extension | Password |

| 6002 | 6002 |

Discussion:

When the variable alwaysauthreject=no, we were able to enumerate valid users on

Asterisk. The results of step 2 show that there are three users registered and all require

passwords for authentication. In step 3 we picked user 6002 and ran svcrack an online

password cracker. The results of step 3 show that user 6002 has password 6002.

This is where password security becomes important. Chapter 2 mentioned that users

should have strong passwords. We repeated the same experiment using a password that

is found in a dictionary and we were able to crack it. Moreover we used a strong password

like R%u7&Fq@^c441U which we could not manage to crack.

5.3.2 Enumeration attempt with variable alwaysauthreject=yes

Step 1: Device identification

courage@courage-desktop:~/Desktop/sipvicious$./svmap.py 146.231.123.15

WARNING:DrinkOrSip:could not bind to 0.0.0.0:5060 - some process might

already be listening on this port. Listening on port 5061 instead

| SIP Device | User Agent | Fingerprint |
--

| 146.231.123.15:5060 | Asterisk PBX 1.6.0.6 | Asterisk /

Linksys/PAP2T-3.1.15(LS) / Asterisk PBX

Step 2: Scanning for valid users

5.4. ENUMERATING VALID USERNAMES ON KAMAILIO SERVER 36

root@courage-desktop:~/Desktop/sipvicious# ./svwar.py 146.231.123.15

WARNING:TakeASip:could not bind to :5060 - some process might already be

listening on this port. Listening on port 5061 instead

ERROR:TakeASip:SIP server replied with an authentication request for an

unknown extension. Set --force to force a scan.

WARNING:root:found nothing

Discussion:

Step 1 show that the server is up and running. With step 2 we were not be able to

enumerate valid usernames on the server. The server responded with the following er-

ror. "ERROR:TakeASip:SIP server replied with an authentication request for

an unknown extension. Set --force to force a scan."

5.4 Enumerating valid usernames on Kamailio server

The objective of this experiment is to show that an attacker can enumerate valid users

by sending a REGISTER requests to the server and analyse the response.

Step 1: Valid username and wrong password

Figure 5.4: 403 Forbidden - Server Response

Step 2: Invalid username and wrong password

5.4. ENUMERATING VALID USERNAMES ON KAMAILIO SERVER 37

Figure 5.5: 401 Unauthorised - Server Response

Discussion:

Firstly, from the results, we could easily determine the server version by looking at the

responses (Kamailio 3.1.3 running on linux). This is important information to an attacker

because outdated versions of applications are often vulnerable to exploits that have been

published and archived for anyone to view [4]. For instance the following vulnerability

report [28].

“Description:

IPTel has confirmed vulnerabilities in the SIP (Session Initiation Protocol) implementa-

tion in all versions of SIP Express Router up to 0.8.9.

The vulnerabilities have been identified in the INVITE message used by two SIP-endpoints

during the initial call setup. The impact of successful exploitation of the vulnerabilities

has not been disclosed but could potentially result in a compromise of a vulnerable device.

Solution:

Upgrade to version 0.8.10 and apply patch:”

Secondly, the server responses will help the attacker to enumerate all valid extensions on

the Kamailio server. Server response “401-Unauthorised”, “403-Forbbiden” and “404-Not

Found” will tell if the username exists or not. If both username and password are wrong

the server response is “401-Unauthorised”. If the peer exist and has wrong password the

response will be “403-Forbbiden”. If the peer does not exist the response will be “404-Not

Found”.

5.5. SUMMARY 38

5.5 Summary

It is essential to know what kind of information attackers get from server responses. Nmap

show the status of ports on the system and on IP phone. All open ports should be filtered

and unnecessary ports should be closed. SIPvicious experiments show that it is important

to set the variable alwaysauthreject=yes. This will prevent an attacker from knowing

the identities of registered users on the system. Users should have strong passwords that

are difficult to brute force. Characteristics of good passwords are mentioned in Chapter 2.

Additionally, an attacker can use leaking information like server versions to check archived

vulnerabilities and use them to his advantage. Finally, Kamailio server responses can be

used to enumerate all valid extensions on the system.

Chapter 6

Conclusion and Future Work

This chapter summarises main coclusions of this thesis. It also provides some insights

into some of the possible future extensions.

6.1 Summary of work

We managed to achieve the two goals in securing the iLanga system to be less prone to

attacks. However, it is important to stress that security is an on-going process and as

new threats emerge, they must be mitigated. Over the course of the investigation, we

identified threats as well as vulnerabilities within the system. Among the threats was to

brute force attacks, on both sip user accounts and the server root account. Vulnerabilities

were also noted which include dialplan injection, ability to enumerate user accounts on

Kamailio proxy server. Some weaknesses are within the Asterisk server itself, for instance,

it allows users to create weak passwords. Toll fraud is another problem that we noted on

the system whereby unauthourised users were making international calls.

There are several countermeasures we implemented on the system to make iLanga less

attack-prone. We used the inbuilt Linux firewall (iptables) to filter incoming traffic. The

firewall was together with the perl script that we developed to quarantine offending IP

addresses. To prevent denial of service to legitimate users, we developed a web UI that

will alert the admnistrator when they got blocked. During the initial installation, we

installed the Asterisk server as a non-root as recommended by the definitive guide in

Chapter 4. There were basic configurations that we did, for instance, setting the variable

alwaysauthreject=yes and changing the default port 5060 to another arbitrary port. In

39

6.2. FUTURE WORK 40

order to prevent toll fraud, we created a secure dialplan with a secure default context and

all incoming contexts being filtered to prevent dialplan injection. Administrators always

need to remotely login to the server machine so we configured public key authentication

and this would make brute force methods hard to perform on the root account.

We also made sure that all default passwords were changed especially on Kamailio which

comes with two default passwords openserrw and openserro. During the initial MySQL

installation, we followed a guide provided by MySQL for securing the initial MySQL

accounts. We immediately changed all default passwords in the grant tables and making

sure all accounts have passwords. Finally, we made an update on all servers so that they

use the latest server versions.

6.2 Future Work

The following are considered as key areas for possible extension:

6.2.1 Enabling password aging

A mechanism can be developed that will ensure that all passwords expire after a certain

period of time, for example a month. If a compromised account changes password it will

prevent an attacker from continuously using that account.

6.2.2 Modifying Kamailio server responses

Experiments in Chapter 5 show that an attacker can enumerate the usernames on the

PBX due server responses. The attacker simply sends a REGISTER request to the server,

capture the packets, and analyse the response.

Server response “401-Unauthorised”, “403-Forbbiden” and “404-Not Found” will tell if

the username exists or not. If both username and password are wrong the server response

is “401-Unauthorised”. If the peer exist and has wrong password the response will be

“403-Forbbiden”. If the peer does not exist the response will be “404-Not Found”.

The server responses can be modified to prevent the ability to enumerate usernames.

That is, the responses can be hardened such that only successful registration will receive

6.2. FUTURE WORK 41

a response. A point to note is that this is how the protocol works which results in the

problem.

6.2.3 Monitoring Call Detail Records (CDR)

It is difficult to monitor log files because of the rate at which the files grow. Every call

that is made is recorded in call data record file. The best way to monitor call events is to

write a simple program that scans all records and looks for suspicious calls. For example

checking for international calls made at odd hours. Of course the program should be

able to detect different times of different countries. This can be done by extracting the

caller ID from the variable ${EXTEN} to determine which country the call is being made

from. The program will then adjust the time appropriately relative to the server time. An

example of a suspicious event would be a caller in South Africa making an international

call to United States of America (USA) from 1:00am to 5:00am (USA time).

6.2.4 Enabling a port knocking mechanism

Manually changing the default port might not effectively solve the problem. Another way

is to keep the default port closed. If a legitimate user wants to use a service, the user

should knock and the port will be opened. In order to open the port, the client should

provide a key. This key should be included in the header of the packet. The firewall can

open the packet and read the field with the key. If the key matches with what it knows,

then it should open the port.

Besides port knocking, another way is to write a program that randomly generates a port

number within a specified range (avoiding known ports). The program will then check

if that port number is being used by another application. If not, this port number will

become the listening port for the server. The server should then broadcast its new port

number to its clients continuously so that all clients are updated. This should be feasible

by including a new field in the packet header, which the client application would open

to see the new port number. The challenge however might be writing an application on

the client’s side that will automatically switch to the new port without the user manually

changing the port.

6.3. SUMMARY 42

6.3 Summary

This project has identified past threats and potential key threats to the iLanga system.

Countermeasures for these threats were implemented. A basic configuration to make the

system secure has also been provided. Appendix D has the concise guide on how to secure

iLanga.

While the iLanga system is currently providing its service in a secure state, some weak-

nesses were identified in the protocols as evidenced by experiments in Section 5.4. This

makes our system not entirely secure, but with the current state of the system it will

require well determined attackers to attack it. With the secure iLanga we managed to

monitor Denial of Service on legitimate users. Attackers who try flooding the server with

requests in order to bring the service down may not achieve this because latest version of

Kamailio comes with anti-flood functionality enabled. Many authors mentioned SPIT as

one of the possible threats to VoIP systems and proposed solutions to it. In this thesis,

we did not investigate much on SPIT as a threat because of time limitations.

It should be emphasised that further enhancements can be done to make iLanga more

secure and easy to monitor. To aid with the latter, an extension of the web UI has been

created to provide a simple mechanism to monitor security issues via a browser. The

administrator is able to view all offending IP addresses that have been blocked, monitor

strength of user passwords and monitor the user status to prevent denial of service.

Bibliography

[1] Douglas C. Sicker and Tom Lookabaugh. Voip security: Not an afterthought. pages

1–9, 2004.

[2] Mugdha Vairagade. Introduction to netfilter/iptables. [Online at

http://www.ibm.com/developerworks/linux/library/s-netip/index.html] last visited

June 2011.

[3] A. Terzoli J. Penton. ilanga: A next generation voip-based, tdm-enabled pbx. In

SATNAC 2004.

[4] David Endler and Mark Collier. Hack Exposed VoIP: Voice Over IP Security Secrets

& Solutions. McGraw-Hill, 2007.

[5] Errol A. Blake. Network security: Voip security on data network–a guide. In Proceed-

ings of the 4th annual conference on Information security curriculum development,

InfoSecCD ’07, pages 27:1–27:7, New York, NY, USA, 2007. ACM.

[6] M Theoharidou G F Marias D Gritzalis S Dritsas, J Mallios. Threat analysis of the

session initiation protocol regarding spam, 2007.

[7] Allan B. Johnston Henry Sinnreich ˙ Internet Communications Using SIP. Wiley

Publishing, Inc, 2006.

[8] Paul Stalvig. Session initiation protocol (sip): A five-function protocol, August 2007.

[9] Ilker Korkmaz and Mehmet Emin Dalkilic. The weak and the strong password pref-

erences: a case study on turkish users. In Proceedings of the 3rd international con-

ference on Security of information and networks, SIN ’10, pages 56–61, New York,

NY, USA, 2010. ACM.

[10] Kamaljit Singh. On improvements to password security. SIGOPS Oper. Syst. Rev.,

19:53–60, January 1985.

43

BIBLIOGRAPHY 44

[11] Werner Puschitz. Securing and hardening red hat linux production systems. [Online

at http://www.puschitz.com/SecuringLinux.shtml] last visited June 2011.

[12] Chlotia Posey Garrison. Encouraging good passwords. pages 1–4.

[13] Jelena Mirkovic and Peter Reiher. A taxonomy of ddos attack and ddos defense

mechanisms. SIGCOMM Comput. Commun. Rev., 34:39–53, April 2004.

[14] Federal Bureau of Investigation. Fbi voip server intrusions in north carolina banks

and businesses. Technical report, Federal Bureau of Investigation, 2009.

[15] John Todd. Seven steps to better sip security with asterisk. [Online at

http://blogs.digium.com/2009/03/28/sip-security/] last edited March 2009, last vis-

ited June 2011.

[16] Nils Aschenbruck, Matthias Frank, Peter Martini, Jens Tolle, and Heinz dieter Rich-

mann. Present and future challenges concerning dos-attacks against psaps in voip

networks, 2006.

[17] Peter Steinbacher, Florian Fankhauser, Christian Schanes, and Thomas Grechenig.

Black-box approach for testing quality of service in case of security incidents on the

example of a sip-based voip service: work in progress. In Principles, Systems and

Applications of IP Telecommunications, IPTComm ’10, pages 101–110, New York,

NY, USA, 2010. ACM.

[18] Dr. Andreas, U. Schmidt, Nicolai Kuntze, and Rachid El Khayari. Spam over internet

telephony and how to deal with it.

[19] David Planella. Sshopensshkeys. [Online at

https://help.ubuntu.com/community/SSH/OpenSSH/Keys] last edited March

2011, last visited June 2011.

[20] A. Lockhart. Network security hacks. Hacks series. O’Reilly, 2007.

[21] Digium. Asterisk. [Online at http://www.asterisk.org/] last visited October 2011.

[22] VoIP-Info. Asterisk slimming. [Online at http://www.voip-

info.org/wiki/view/Asterisk+Slimming] last visited June 2011.

[23] Leif Madsen, Jim Van Meggelen, and Russell Bryant. Asterisk : The Definitive

Guide. O’REILLY, 2011.

BIBLIOGRAPHY 45

[24] Digium. Security advisories. [Online at http://www.asterisk.org/security] last visited

October 2011.

[25] Teamforest. Automatically block failed sip peer registrations. [Online

at http://www.teamforrest.com/blog/171/asterisk-no-matching-peer-found-block/]

last visited July 2011.

[26] Nmap. Nmap security scanner. [Online at http://nmap.org/book/man.html] last

visited June 2011.

[27] SecTechno. Hacking exposed voip/sip. [Online at

http://www.sectechno.com/2011/05/23/hacking-exposed-voipsip/] last visited

October 2011.

[28] Secunia. Iptel sip express router sip vulnerabilities. [Online at

http://secunia.com/advisories/8119] last visited October 2011.

Appendix A

How to install Asterisk as non-root

In order to compile Asterisk from the source code, the following dependencies should be

installed.

apt-get install gcc

apt-get install g++

apt-get install make

apt-get install libncurses5-dev

cd /usr/local/src

wget http://downloads.asterisk.org/pub/telephony/asterisk/

asterisk-1.8-current.tar.gz

tar xvfz asterisk-1.8.current.tar.gz

Install Asterisk

cd aterisk-1.8

./configure

make

make install

Create a new user asteriskpbx

useradd asteriskpbx && passwd asteriskpbx

At this point we have installed files in their default locations so we need to change file

permissions to match the asteriskpbx user.

46

47

chown -R asteriskpbx:asteriskpbx /usr/lib/asterisk/

chown -R asteriskpbx:asteriskpbx /var/lib/asterisk/

chown -R asteriskpbx:asteriskpbx /var/spool/asterisk/

chown -R asteriskpbx:asteriskpbx /var/log/asterisk/

chown -R asteriskpbx:asteriskpbx /var/run/asterisk/

chown asteriskpbx:asteriskpbx /usr/sbin/asterisk/

Create /etc/asterisk/ directory

mkdir -p /etc/asterisk

chown asteriskpbx:asteriskpbx /etc/asterisk

Copy the sample asterisk.conf file into the /etc/asterisk and

cp /usr/local/src/asterisk.con.sample /etc/asterisk/asterisk.conf

Change the runuser and rungroup to have values of asteriskpbx

vim /etc/asterisk/asterisk.conf

Giving sudo access to the asteriskpbx is done by modifying the sudoers file.

visudo

In the sudoers file, you should see

allows people in a group to run as all commands

%wheel ALL=(ALL) ALL

Save and exit (Esc +:wq + Enter)

Open the /etc/group using nano or any editor of your choice

nano /etc/group

Find the line that starts with wheel. Modify it to look like

wheel:x:10:root,asteriskpbx

Save and exit

Exit root

At this point, asteriskpbx should run as a non-root.

Appendix B

How to configure public key

authentication

The following steps can be found on [19].

Creating public and private key on the command line

1. Create directory named ssh (may exist by default)

mkdir ~/.ssh

2. Change the directory permissions

chmod 700 ~/.ssh

3. Generate the key and this is where you set key encryption level to 4096 bits

ssh-keygen -t rsa -b 4096

4. The created key by default will be in ˜/.ssh/ directory and its named id rsa and

id rsa pub

Now copy the public key to the server

scp ~/.ssh/id rsa.pub X.X.X.X(eg 146.231.123.15) :

~/.ssh/authorized keys

5. On both client and server issue the following command

chmod 0600 ~/.ssh/*

48

49

6. Create SSH users on the server side

groupadd sshusers

usermod -a -G sshusers courage

7. SSH server configuration

Using vim editor or any editor of your own choice open the file sshd-config

8. # vim /etc/ssh/sshd-config

9. Make the following changes

ListenAddress 146.231.123.15 [server IP address]

PermitRootLogin no

AuthourizedkeyFile %h/.ssh/authourized keys

UsePAM no

After this one should be able to login using SSH. The private key has to be stored on a

secure place.

Appendix C

Perl Script that blocks offending IP

Addresses

#!/usr/bin/perl -w

use strict;

use warnings;

my (@failhost);

my %currblocked;

my %addblocked;

my $action;

my $count;

my $counter;

open (MYINPUTFILE, "/var/log/asterisk/messages") or die "\n", $!, "Does log

file file exist\?\n\n";

open(MYOUTPUTFILE, ’>/etc/asterisk/data.txt’);

while (<MYINPUTFILE>) {

my ($line) = $;

50

51

chomp($line);

if ($line =~ m/\’ failed for \’(.*?)\’ - Peer is not supposed to register/)

{

push(@failhost,$1);

}

if ($line =~ m/\’ failed for \’(.*?)\’ - No matching peer found/){

push(@failhost,$1);

}

if ($line =~ m/\’ failed for \’(.*?)\’ { Wrong password/) {

push(@failhost,$1);

}

}

my $blockedhosts = ‘/sbin/iptables -n -L INPUT‘;

while ($blockedhosts =~ /(.*)/g) {

my ($line2) = $1;

chomp($line2);

if ($line2 =~ m/(\d+\.\d+\.\d+\.\d+)(\s+)/) {

$currblocked{ $1 } = ’blocked’;

}

}

while (my ($key, $value) = each(%currblocked)){

print $key . "\n";

}

if (@failhost) {

52

&count unique(@failhost);

$counter=1;

while (my ($ip, $count) = each(%addblocked)) {

if (exists $currblocked{ $ip }){

print "$ip already blocked\n";

print MYOUTPUTFILE "[".$counter."]"."\nip = ".$ip."\nattempts
= ".$count ."\n";

$counter++;

} else {

if($count > 6)

{ $action = ‘/sbin/iptables -I INPUT -s $ip -j DROP‘; # create

an user chain

print MYOUTPUTFILE "[".$counter."]"."\nip = ".$ip."\nattempts
= ".$count ."\n";

$counter++;

}

print "$ip has $count attempts.\n"; } }

}

else {

print "no failed registrations.\n";

}

close(MYOUTPUTFILE);

sub count unique {

my @array = @ ;

my %count;

map { $count{$ }++ } @array;

map {($addblocked{ $ } = ${count{$ }})} sort keys(%count);

}

Appendix D

A concise guide on how to secure

iLanga

1. Install Asterisk as a non-root. Refer to Appendix A for detailed steps.

2. Set the variable alwaysauthreject=yes in the sip.conf file.

3. Change the default port 5060 to an arbitrary port. This will require port modifica-

tion on client side.

4. Enforce strong passwords for all users. Users should be provided with guidelines on

how to create strong passwords. A program or a script should run in the background

checking password strength for all users on the system and alerting the administrator

of any weak passwords. Change all default passwords.

5. Create a secure dialplan. The default context should not have a context that will cost

the organisation money. Prevent dialplan injection by using the inbuilt FILTER()

to filter anything defined as incoming context.

6. Make use of the firewall (iptables works well for Unix systems) to quarantine of-

fending IP addresses.

7. Monitor suspicious activities especially long distance calls made during odd hours.

8. Monitor denial of service on legitimate users. The system should be always available

to users when they need it.

53

54

9. Use public key authentication for remote login. Generate the private and public

keys. The public key will reside on the server. Login will be done using the private

key instead of password. Refer to Appendix B for detailed steps.

10. Subscribe to Asterisk Security Advisories for vulnerability updates and versions

affected on www.asterisk.org/security.

