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Abstract

This project produced a prototype system that could analyse and report on packet capture

�les generated by network telescopes. This incorporated prior research has gone into both

the analysis of packet captures as well as the reporting of results. This research considers a

variety of basic numeric analysis and reporting techniques in an attempt to gain a greater

understanding of the requirements of the system. The design and implementation of the

system was based on the need of the system to have a standardised infrastructure to allow

for comparison of results between darknets. Another focus of development was to include

an element of �exibility to the reporting output. The results are then considered and

expanded upon using reporting output, in an attempt to better understand the packet

activity captured by the dataset and represented by the reporting infrastructure.
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Chapter 1

Introduction

This introductory chapter deals with introducing the problem that is handled by the

project. It will also include an overview of the project considerations as well as a break-

down of the chapters that are to follow. This chapter will focus on introducing the context

of the system. This chapter will also outline the structure of the document. The system it-

self is based around packet capture �les created by network telescopes. Network telescopes

create a new avenue of study for computer scientists, by observing the packets collected by

them we can gain greater knowledge about security threats and attacks prevalent on the

Internet (Moore, Shannon, Voelker, and Savage, 2004). Tra�c captured by network tele-

scopes are inherently interesting because none of the captured packets have a legitimate

reason for arriving at network telescopes to be recorded as they are all unsolicited (Pang,

Yegneswaran, Barford, Paxson, and Peterson, 2004).The analysis and study of network

telescope tra�c captures will allow us to better understand the presence of network scans,

worm activity and DDoS activity through re�ected tra�c (Harder, Johnson, Bradley, and

Knottenbelt, 2006). The nature of Internet Background Radiation is constantly changing

(Wustrow et al., 2010). The analysis of this data can reveal the trends and activity of

malicious packets and their hosts (Allman, Paxson, and Terrell, 2007).

1.1 Problem Statement

Network telescopes observe millions of packets of Internet tra�c through the monitoring

of unused IP address space (Moore et al., 2004). The data gathered by these telescopes

is important to the study of Internet Background Radiation (Pang et al., 2004) and also

1



1.2. RESEARCH GOALS 2

more speci�cally to the monitoring and study of potentially malicious IP tra�c across the

Internet (Irwin, 2011). With increasingly large datasets being created by telescopes across

multiple studies, the distribution of analysis results through the scienti�c community could

be improved by creating a �exible yet standardised reporting engine (Irwin, 2013). Such

a standardised reporting format will also provide researchers with an overview of trends

in the analysed data-sets.

1.2 Research Goals

Information security has recently become an important �eld both academically and eco-

nomically. As a result there is much research and analysis performed on the packet cap-

tures of network telescopes (Moore et al., 2004), greynets (Harrop and Armitage, 2005)

and honeynets (Francois, Festor, et al., 2009). An issue currently faced is a lack of stan-

dardisation with the reporting of results. This in turn makes it di�cult for researchers

to compare analysis results across di�erent studies, or even across di�erent darknets. A

reporting engine that analyses and represents the data from di�erent darknets in a stan-

dardised and comparable format would enable researchers not only to analyse the tra�c

in their own datasets, but also to quickly compare results and �ndings with other re-

searchers. This will also allow for an acceleration in the publication of reported �ndings

in the research community.

The goals of the research are as follows:

• To investigate the feasibility of a �exible yet standardised reporting engine that

reports on data generated from packet captures.

• To build a prototype system that would be able to analyse pcap data�les.

• To buld a prototype reporting framework for the analysis results.

Section 3.5.3 of this paper will determine whether or not, and to what extent, these goals

have been met by the prototype system.

1.3 Research Scope

The scope of the research must be de�ned to give context to the research and documen-

tation that comprises the rest of the document.
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The datasets were �ve packet capture �les from �ve separate darknets. Each dataset was

a part of larger datasets that have been collected for academic research. The datasets are

discussed in section 3.1.

This system cannot send or receive packets across a network, even though some of the sys-

tem libraries have such capabilities. The reporting system is designed to receive formatted

pcap data�les.

The system will not be expected to create textual analysis to support the visual report as

this was considered to be outside the scope of an Honours project. The core focus of the

system is to produce graphical and tabular output as a framework for an analyst; room

is left in the generated report for the analyst to comment on �ndings presented in the

report.

1.4 Document Structure

• Chapter two is a literature review on the analysis and reporting of packet capture

data. This chapter looks at more clearly de�ning the concepts needed to develop

a larger context for the project. Various analysis approaches are also investigated

along with techniques for representing packet-related data.

• Chapter three covers the design and implementation of the prototype system. The

fundamental components of the system are identi�ed, after which the challenges and

changes during implementation are discussed. This chapter also contains a critical

evaluation of the system.

• Chapter four contains case studies that showcase the analysing and reporting capa-

bilities of the document. Anomalies in initial darknet result comparisons are broken

down and analysed in isolation.

• Chapter �ve holds the �ndings as well as the �nal evaluation on the project. A

section is also reserved for possible future work on the project.

• An appendix follows the conclusion chapter that contains output from both the

general and ancillary reports, as well as information on reaching the project program

�les through GitHub.



Chapter 2

Literature Review

2.1 Introduction

The pursuit of the study of network security is almost as old as the Internet itself (Irwin,

2011). Real interest in the topic only developed after the discovery of the Morris worm in

November of 1988 (Spa�ord, 1989). Network telescopes are a valuable tool in gaining an

understanding about activity across a network. They give researchers the ability to collect

large amounts of packet data across parts of the physical Internet (Moore et al., 2004).

This raw data is inherently meaningless, but through analysis much can be learned about

the behaviour of malicious Internet tra�c (Bailey, Cooke, Jahanian, Provos, Rosaen, and

Watson, 2005b). With large datasets being created by telescopes across multiple studies,

the distribution of analysis results through the scienti�c community could be improved

by creating a �exible yet standardised reporting engine (Irwin, 2013). The need for tools

in the �eld of digital forensics is increasing rather than decreasing, and there is scope for

improvement and availability of these tools (Gar�nkel, 2010).

This literature review will introduce the origin of the data in sections 2.2 - 2.6. Sections

2.7 - 2.10 will examine analysis techniques for packet captures. Data visualisation and

reporting techniques will be examined across sections 2.11 - 2.13.

2.2 Network Telescopes

A network telescope is some part of assigned and address routed IP space. The IP ad-

dresses are used but not utilized by any host system (Moore et al., 2004). A network

4
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telescope makes use of unallocated IP addresses by monitoring the activity at these ad-

dresses (Irwin, 2013). This allows researchers to study the characteristics and behaviour

of Internet Background Radiation without having to worry about distinguishing between

IBR and legitimate network tra�c (Irwin, 2013). Any tra�c received can be de�ned as

unsolicited (Moore et al., 2004). Studying tra�c captured by these telescopes provide

researchers with interesting insights into network security events such as denial-of-service

attacks, Internet worm packets and network scanning attempts (Moore et al., 2004). Net-

work telescopes do not respond to requests, nor send tra�c within the IP address block

that it observes. The telescope does not record packet data outside of the observed net

block (Du and Yang, 2011). Figure 2 gives a simple overview of a network telescope

infrastructure. The probe targets in this diagram, following normal network telescope

practices, will be unused IP addresses (Moore et al., 2004). The probes are randomly

sent across the network from an active end-host, and some of the randomly generated IP

addresses fall into the observed network block; as such the probing packets are recorded

by the network telescope.

Figure 2.1: Basic schema of a Network Telescope
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2.3 Classi�cation of Network Telescopes

Darknets, or non-populated network blocks, have been favoured for studying malicious

packet activity across networks because all packet data is unsolicited (Irwin, 2013). A

non-populated network block is an IP address block for which there are no active end-point

hosts. This means that there is a high level of con�dence that received packets or network

activity is not legitimate (Moore et al., 2004). The di�erent types of observed network

are discussed below.

2.3.1 Darknet

A darknet, also referred to as a Blackhole or a Sink, is described as a completely passive

packet sink (Irwin, 2011). As a result the IP tra�c across this network is completely

unidirectional (Zseby, King, Fomenkov, and Cla�y, 2014) as darknets do not respond to

any tra�c received across the unused IP address block (Moore et al., 2004). It is important

to remember that the malicious and miscon�gured activity on any two darknets is rarely

the same; the di�erence coming from the position of the darknet on the network as well

as how the darknet responds to incoming tra�c (Bailey, Cooke, Jahanian, Myrick, and

Sinha, 2006).

2.3.2 Lightnet

A lightnet has no canonical de�nition, but if a darknet can be said to be an IP address

block that is completely unpopulated (Bailey et al., 2006) then a lightnet, or lit network,

would be a network address block that is mostly or completely populated (Harrop and

Armitage, 2005). Darknet data o�ers valuable analysis opportunities because most if not

all of the intercepted tra�c is unsolicited (Bailey et al., 2005b). The same rule does

not apply to lightnets, where most or all of the users are active and each end-host could

potentially be sending and receiving packet data across the network. This makes analysis

of the data more di�cult, and as such lightnet monitoring is more prevalent in cases where

malicious packets have to be identi�ed in a timely manner (Dhillon and Ansari, 2012). A

smaller IP block will be observed in such cases, and as a result there is a trade-o� between

the amount of data gathered and the ability to react to it (Bailey et al., 2005a).
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2.3.3 Greynet

A greynet is a network block that holds smaller IP blocks that fall into two categories,

dark or lit (Harrop and Armitage, 2005). The dark blocks within the greynet are identical

in action to a darknet, and do not respond to Internet tra�c. The lit blocks within the

greynet grant the telescope the ability to observe otherwise unaccessible tra�c across

the monitored network block (Irwin, 2011). While some lit network blocks may consist

of active hosts, they may also be running a TCP-connection spoofer. This allows the

receiving host to spoof a TCP SYN/ACK handshake, allowing the network telescope to

capture the TCP packet data that would come after the handshake, before the target host

sends a TCP RST and drops the connection (Irwin, 2011). This allows the telescope to

capture packet data that would not be available on a pure darknet as the TCP SYN from

the possibly attacking source would not be responded to (Harrop and Armitage, 2005).

2.4 Network Telescope tra�c type

A typical network telescope will collect both relevant and irrelevant tra�c. One task

of telescope data-set analysis is to sort packets so that those that o�er no intelligible

information can be identi�ed and ignored. The packets worth analysing can be grouped

as follows:

2.4.1 Active Tra�c

Active tra�c can be determined to be packets which are expected to elicit a response when

processed by the TCP/IP stack of the receiving host (Irwin, 2011). TCP packets that have

the SYN �ag set, indicating that a response is expected, are counted for analysis purposes.

TCP packets that have the ACK or RST �ags set could be the result of backscatter tra�c.

Backscatter tra�c is intercepted when monitored address are being used to spoof packets

as part of a security attack (Irwin, 2013). ICMP tra�c packets that attempt to elicit

any response will also be analysed (Harder et al., 2006, Irwin, 2011). Since UDP tra�c

is stateless, no expectations for initiation or response can be inferred from the headers.

As such, deeper analysis of the UDP payload is required to determine if the UDP tra�c

is active (Irwin, 2011). An example of network tra�c considered active can be seen in

Table 2.1 (a).
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2.4.2 Passive Tra�c

Passive tra�c is tra�c that, when processed by the TCP/IP stack of the receiving host will

give no legitimate response. It is considered unlikely that potentially malicious software

would use these packets to determine information about the host system (Irwin, 2011).

Passive tra�c is usually the result of scanning activity; which is typically the result of the

monitored IP range being spoofed, denial-of-service �ooding, miscon�guration of network

addresses or mangled and unintelligible packets (Irwin, 2011). An example of network

tra�c considered passive can be seen in Table 2.1 (b).

Table 2.1: Classi�cation of active and passive tra�c

(a) Active network packet classi�cation (Irwin, 2011)

(b) Passive network classi�cation (Irwin, 2011)
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2.5 Internet Background Radiation

Internet background radiation (IBR) is unsolicited tra�c (Bailey et al., 2005b) sent re-

ceived by an IP address block with no active hosts (Wustrow et al., 2010). This tra�c

can also be described as nonproductive, as it is received by unused IP addresses, non-

functioning servers and servers that are not intended to receive tra�c (Pang et al., 2004).

IBR is collected across network telescopes (Pang et al., 2004), sometimes referred to as

darknets, as will be discussed later (Bailey et al., 2005b). This is done to remove the pos-

sibility of legitimate tra�c being captured with the IBR, as no legitemate tra�c would

be requested by a darknet (Irwin, 2013).It is possible to divide such unwarranted packets

into two classes, malicious and benign (Pang et al., 2004).

2.5.1 Benign background radiation

There are few reasons that benign packets are destined for an unused IP block. As the

monitored IP block is empty of live hosts, none of the packets received have been solicited,

nor are any of them expected (Bailey et al., 2005b). Very few functioning end-hosts

would send unsolicited data to an unused IP block, unless the sending host was somehow

miscalibrated (Irwin, 2011). This leaves the few mangled or miscon�gured packets who

end up at the IP block by chance, along with re�ected reply packets from Internet activity

in other blocks, known as backscatter (Moore et al., 2006).

2.5.2 Miscon�gured Packets

One reason is miscon�guration of the packet, which most likely comes about through an

error occurring when entering the destination address. This could occur at an end-point

system or in a Network Address Translation gateway (Irwin, 2011).

2.5.3 Backscatter

Backscatter can be de�ned as tra�c that has arrived at the network telescope as a re-

sult of activities which caused re�ection of tra�c from the originating machine (Irwin,

2013).Most of this radiation is made up from falsely addressed as a result of an address

in the observed block being spoofed (Pang et al., 2004). Packet Spoo�ng is when an
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end-system generates a source IP for the packet header that is not the actual IP of the

end-host (Harder et al., 2006). A source of backscatter is a spoofed SYN-�ood Denial

of Service (DDoS) attack (Pang et al., 2004). As a result, the network telescope will

receive ACK (acknowledgement) packets as that unused IP address is the spoofed source

that the attacker is using, as the DDoS is �ooding the target end-host with SYN packets

to disrupt service (van Riel and Irwin, 2006a). The following TCP packet combinations

are usually classi�ed as backscatter, as they are the packets most likely to be generated

from an end-host attempting to respond to a spoofed source: TCP ACK(acknowledge),

RST(reset), SYN(synchronise)+ACK, and RST+ACK (Wustrow et al., 2010).

2.5.4 Potentially malicious background radiation

Malicious packets can be considered as unsolicited network tra�c that attempts to gain a

response from, or interact with, the end-point system of an unused IP address block (Irwin,

2011). This includes network scans by worms, Denial of Service (DDoS) attempts, ICMP

packet scans and TCP SYN+ACK requests (Irwin, 2011, Pang et al., 2004). Potentially

malicious tra�c attempts to connect or interact with an end-host, and as such can be

classi�ed as active tra�c. Tra�c that does not attempt to elicit a response from the host

is considered passive, and usually classed as benign tra�c. These classi�cations will be

discussed in depth in the Network Telescope section.

2.6 Sources of IBR

There are di�erent network activities that produce IBR. Some of them are active in

nature, i.e. worms or botnets actively searching for vulnerable end-point hosts; scanning

a network is usually the �rst step in exploiting a network (Muelder, Ma, and Bartoletti,

2005). Other packets are received as a result of address spoo�ng. To make it di�cult

for a target end-host or the host's ISP to detect DoS attacks, attackers will spoof source

IP addresses of packets intended for the victim. As the target end-host cannot easily

di�erentiate malicious tra�c from legitimate tra�c, it will attempt to respond to all

packets received (CAIDA, 2012).
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2.6.1 Packet Spoo�ng

If the attacker spoofs IP addresses in the Network Telescope address block, reply packets

from the attack will be observed as they travel to a host that does not exist (CAIDA,

2012). Figure 1a shows a Denial of Service attack taking place on a target system. Figure

1b explains how backscatter, or reply packets(Moore et al., 2006), are captured by the

darknet as a result of packet spoo�ng. The packets received from the attacker have a range

of spoofed addresses; some of the reply packets are then sent to an observed but unused

IP address block and intercepted by the telescope (Bailey et al., 2005b). A diagrammatic

representation of this can be seen in Figure 2.2 below. Apart from the TCP-SYN �ood

mentioned above, an ICMP Type 8 ping-�ood can result in ICMP Type 0 responses which

consume bandwidth on both the uplink and downlink of a network (Irwin, 2011).

(a) DoS attack on a target end-host

(b) DoS backscatter catpured by network telescope

Figure 2.2: DoS attack on a target end-host and resultant backscatter
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2.6.2 Denial of Service attacks

A Denial of Service (DoS) attack on a target host is initiated with the expected result

that the target system will crash or become overwhelmed by packets and/or connections,

making the formation of legitimate connections di�cult if not impossible (Kurose and

Ross, 2010). This is done by consuming the network resources available to the host

(Moore et al., 2006) or by causing the crash of the host system (Kurose and Ross, 2010).

2.6.3 Vulnerability Attack

This DoS attack focuses on sending packets designed to cause malfunctions to a vulnerable

application or operating system, in an attempt to make the host crash or stop a service

(Kurose and Ross, 2010).

2.6.4 Connection Flooding

This DoS attack relies on creating TCP connections with a target host in an attempt to

prevent later legitimate connections by leaving the connection open (Kurose and Ross,

2010). Some of the DoS backscatter observed will be TCP SYN-ACK packets, to show

that a connection has been established with the target host (Kurose and Ross, 2010).

This type of DoS generates the most darknet data as the target host will send replies to

the received packets, usually in the form of ACK, SYN-ACK or RST packets (Wustrow

et al., 2010).

2.6.5 Bandwidth �ooding

This DoS attack relies on rapidly �ooding the target host with a large number of packets

(Moore et al., 2006). In doing so the host cannot accept legitimate packets simply because

a packet bottleneck has been created at the target host (Kurose and Ross, 2010).

2.6.6 Malicious Network Scans

Scans can range from fully manual to fully automated in nature. The purpose of a network

scan is to identify active hosts in that network block, and then to �nd vulnerabilities on
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those hosts. As such, network scans can take the form of simple ping requests across a

network to determine live hosts, sequential port scans across a single IP address to search

for vulnerabilities, or the scanning of one or a small number of possibly vulnerable ports

across an IP network (CAIDA, 2012). Network scans will usually take place as port scans,

i.e. where a port or group of ports is scanned over multiple IP addresses (Harder et al.,

2006), or it will be in the form of a host scan, where all open ports of a single IP are

scanned before moving to the next (van Riel and Irwin, 2006b). Worm activity forms part

of the total scanning activity observed on a network (Muelder et al., 2005).

2.6.7 Internet Worms

Internet worms will attempt to spread by targeting randomly generated IP addresses

(Irwin, 2012b). When randomised IP addresses correlate to addresses within the IP block

observed by the telescope, those packets will be recorded (CAIDA, 2012). One such worm

is the Con�cker worm of November 2008 (Irwin, 2012b), which will be discussed with

other worm examples in the analysis section.

2.7 Dataset Analysis

In the present network security environment, patterns and behaviour of denial-of-service

attacks and self-propagating worms have become some of the most important security

concepts to understand (Wustrow et al., 2010). The reason for this being that these types

of network activity pose one of the greatest threats to network integrity (Kim, Reddy,

and Vannucci, 2004). This section will deal with the di�erent analysis techniques and

approaches used in the study of network telescope data. Analytical approaches will be

discussed, as will some of the interesting statistics or information revealed by this analysis.

Part of this section will also deal with highlighting important statistics and identi�ers that

should be considered in the analysis.

Research on and analysis of network tra�c reveals many characteristics about possibly

malicious network tra�c across the Internet (Wustrow et al., 2010). The interest in this

�eld has led to the development and utilisation of many di�erent methods for packet

analysis (Muelder et al., 2005). Some strategies and designs for network tra�c analysis

are highlighted below.
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2.7.1 Network telescope analysis

Time is an important characteristic of packet analysis, and the temporal interaction be-

tween IP addresses and ports across a network telescope can reveal a wealth of data

(Nkhumeleni, 2014). The analysis of temporal patterns within datasets allows researchers

to observe and correlate packet activity patterns (Pang et al., 2004), even allowing analysis

of discrete events across multiple darknets (Irwin, 2013). Systematic grouping of certain

packet characteristics, such as the protocol used by the received packet, allow for a more

abstract analysis, and highlight key trends (Nkhumeleni, 2014). Figure 4 describes the

popularity of protocols used in potentially malicious packet exchange (Nkhumeleni, 2014).

The graph shows that TCP is the most popular protocol for attempting network interac-

tion, and is used much more frequently than the UDP and ICMP protocols (Nkhumeleni,

2014).

Figure 2.3: Breakdown of packet protocol usage across �ve darknets (Nkhumeleni, 2014)

Aggregate analysis of port activity also yields interesting results. Large amounts of port

tra�c was observed over port 445/tcp (Nkhumeleni, 2014). This tra�c is most likely

generated by the Con�cker worm, which targets port 445/tcp (Irwin, 2012b). It is possible

that the Sasser worm is responsible for some part of the observed tra�c as it also exploits

port 445/tcp (Harder et al., 2006). There was also a large amount of observed tra�c over

port 1434/udp, indicating SQL Slammer activity(Bailey et al., 2005b) across the network

block.
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2.7.2 Analysis across multiple network telescopes

By analysing and comparing data from �ve distinct network telescopes, it becomes easier

to discern patterns in global Internet background radiation (Irwin, 2013). This is be-

cause there is less interference from backscatter radiation which is potentially focused on

a speci�c address block (Bailey et al., 2005b). Having data from multiple address blocks

allowed for comparison between the results. An analysis of the top 10 TCP and UDP

ports across the telescopes revealed that the same targeted ports were almost consistently

present across all telescopes (Irwin, 2013). The data also revealed the presence of the same

hosts across multiple network blocks, a notable example of this being that more than ten

thousand unique hosts were discovered sending packets to 3389/tcp, the Microsoft Remote

Desktop Protocol, across all �ve observed network blocks (Irwin, 2013). Analysing data

from distributed darknets gives researchers a more global perspective on unsolicited net-

work tra�c (Bailey et al., 2005b). One notable di�culty with using a distributed darknet

to gather packets is to make sure that all the darknet clocks are synchronised (Nkhume-

leni, 2014). Without temporal accuracy, it becomes more di�cult to draw correlations

between observed network events across di�erent network telescopes (Nkhumeleni, 2014).

2.7.3 Identi�cation of trends across multiple datasets

The characteristics of malicious IBR are not restricted to speci�c network blocks. Valuable

analysis results can be found by comparing analyses of separate network blocks as it will

e�ectively �lter and highlight the re-occurrence of possibly malicious packets (Bailey et al.,

2005b).

Analysis was done comparing the results of �ve distinct /24 network blocks that were

contained within the TENET network (Irwin, 2013). A study of the protocols carried by

the packets revealed that most of the potentially malicious packets were TCP protocol

packets. It was further seen that 99.97% of tra�c across these blocks was as a result

of either TCP, UDP or ICMP tra�c (Irwin, 2013). The observation of various address

blocks allows for the aggregation of the top ten source and target destination ports of

potentially malicious IBR (Irwin, 2013). Another important aspect of observing multiple

datasets is the ability to compare activity across networks to isolate important data, such

as worm activity on a single port across address blocks (Nkhumeleni, 2014).

Another study that spanned over 60 darknets in 30 organisations found that the majority

of IBR packets stem from relaitvely few unique IP addresses. They also found that some
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packet behaviour consists of sources, and to some extent the services being targeted,

that are not observable through darknet analysis (Bailey et al., 2005b). Two main types

of historic network analysis were presented, the observation of live networks, and the

observation of darknet packet data. The issue was raised that neither form of analysis

was broad enough to gather all of the available data. As such a scalable hybrid analysis

architecture was created that utilised two components. Internet Motion Sensors (IMS)

were formed through a collection of distributed darknet sensors (Bailey et al., 2005b).

Any new activity recorded on the darknet was then sent to the second component, the

Host Motion Sensor (HMS) for further in-depth analysis. This was done in the hope of

creating a scalable architecture that could detect new worm behaviour or attacks across

the global network in a timely manner(Bailey et al., 2005b). A notable point raised in the

paper was that it was more e�cient to consider the distributions of source IP addresses

rather than the unique source IP addresses themselves when analysing and comparing

data from di�erent darknets; especially when an active response is time-critical (Bailey

et al., 2005b).

2.8 Packet analysis

Packet headers hold important information about the packet, such as the source and

destination addresses, source and target ports, and packet length (Kurose and Ross,

2010). As a network telescope passively captures tra�c (Nkhumeleni, 2014) in almost

all cases, it becomes di�cult to intercept active TCP packets (Irwin, 2011). While UDP

and ICMP tra�c can be passively gathered (Bailey et al., 2005a), the TCP packets which

have a considerably larger presence on the network cannot be analysed as their payloads

are never delivered (Irwin, 2013). The packet header of the �rst TCP-SYN connection

attempt, as well as other packet headers, a�ord researchers the opportunity to better

estimate the likelihood that a captured packet had malicious intent.

2.8.1 Analysis of packet size and attack pattern

The growing trend of peer-to-peer network communication across the Internet has made

it more di�cult to analyse packets for reliable data (Lin, Lu, Lai, Peng, and Lin, 2009).

One interesting analysis value is the packet size distribution in the data (Lin et al., 2009).

An example of this is the TCP packet size, as TCP is the most common application layer

protocol (Kurose and Ross, 2010) observed in many darknet repositories (Irwin, 2013).
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A TCP packet cannot be smaller than 60 bytes, and if the mean packet size distribution

lies close to this value, it can be inferred that the SYN packets captured on the darknet

are connection attempts rather than miscon�gured packets (Irwin, 2011). Another way

of identifying suspicious packet activity is to look for a correlation between destination

IP address and port numbers present in the headers (Kim et al., 2004). An statistically

unlikely number of packets with the same ports and destination addresses may indicate

that an attack is occurring or that a target machine has been compromised (Kim et al.,

2004).

2.8.2 Analysis of Time To Live data in header

Another interesting form of analysis included the systematic study of the Time to Live

(TTL) �eld in packet headers to determine if a scan was a legitimate security threat or

a decoy scan to hide the actual scan (O'Connor, 2013). This was achieved as a result of

the TTL header decrementing as it travels across routers. Every packet header holds a

TTL value, which is decremented as it travels across routers, to prevent (faulty) packets

looping endlessly across the network and consuming network resources (Kurose and Ross,

2010). This means that if the scans were unnecessarily bounced across routers they would

have a lower TTL than the malicious scan; as a result the origin and location of the

malicious scan could be determined (O'Connor, 2013). Figure 5 illustrates the change of

TTL information in the packet header as it travels across routers.

Figure 2.4: TTL header decrements after travelling through router
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2.9 Worm Tra�c Analysis

In recent years there has been an increase in activity of worms (Harder et al., 2006).

Worms are self-propagating malware that seek to take advantages of vulnerabilities of the

target system, and then use that compromised system to propagate further (Irwin, 2011).

Worm activity will usually be noticeable as the packet data is focused on a single, or small

range of, ports as worms seek to exploit speci�c vulnerabilities (Muelder et al., 2005).

Widespread infection creates many dangers for network users, including the possibility of

launching unmanageable DDoS attacks from the large number of infected hosts (Staniford

et al., 2002).

2.9.1 Con�cker

The Con�cker worm exploits a netBIOS vulnerability in some Windows operating systems

(Shin and Gu, 2010). Systems identi�ed as critical (level of vulnerability) are Windows

2000, XP and 2003; Vista and Server 2008 were identi�ed as important (Bortnik, 2010).

Con�cker targeted port 445/tcp, through which the vulnerability identi�ed in MS08-0671

could be exploited (Irwin, 2012b). An observation of captured packet sizes received at

port 445/tcp show the majority of them to be 62 bytes in size, which correlate strongly

to initial Con�cker propagation tra�c capture (Irwin, 2012b). Con�cker also updates

itself by generating new domain names, and then connecting to said names to download

a newer version of itself to the compromised host (Shin and Gu, 2010). By cracking the

domain-generation algorithm, researchers have been able to use DNS sinkholing, similar

to network telescope practice, to intercept packets from the Con�cker worm and study

them (Shin and Gu, 2010). Analysis of Con�cker activity highlighted another interesting

trend in worm activity, a �aw in the propagation generation algorithm. Con�cker was

limited to IPv4 address blocks 0-127 on a /24 subnet in the second and fourth octets of

IPv4 target generation (Irwin, 2013). The result of the �aw can be seen in �gure 6, where

worm activity drops after reaching IP x.x.x.128 for certain subnets, while remaining active

in other subnet blocks (Irwin, 2013).

1https://technet.microsoft.com/en-us/library/security/ms08-067.aspx
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Figure 2.5: Con�cker activity across 5 subnets (Irwin, 2013)

2.9.2 Code Red

The Code Red worm was discovered in July of 2001, and exploited hosts by compromising

Microsoft IIS web servers (Staniford, Paxson, Weaver, et al., 2002). The vulnerability used

is listed under CVE number CVE-2001-05002. The �rst version of the worm, CRv1, had a

�aw similar to that seen in Con�cker (Irwin, 2013), where it used a �xed seed for random

address generation (Staniford et al., 2002). As a result all newly propagated instances of

the worm attempted to compromise the same range of IP addresses. The random number

generator was �xed with the release of CRv2, or Code Red I, into the wild on 19th July

2001 (Staniford et al., 2002). Another note is that the newer CRv2 contained a DDoS

payload targeting the web server of the White House3 (Staniford et al., 2002).

2.9.3 Slammer

The Slammer worm is still alive, and produced all of the background radiation observed at

port 1434/udp in 2005 (Bailey et al., 2005b). The Slammer worm is an interesting case as

the majority of the vulnerable population of end-point systems were compromised in less

than 30 minutes (Bailey et al., 2006). The targeted vulnerable systems are those running

unpatched versions of SQL Server 2000 and Microsoft Desktop Engine (MSDE) 2000

(Irwin, 2011), through which the worm exploits an over�ow vulnerability (Nkhumeleni,

2http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2001-0500
3http://www.whitehouse.gov/
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2014). The Slammer worm activity is characterised by packets that are 404 bytes in size

and, as previously mentioned, focus on port 1434/udp (van Riel and Irwin, 2006a).

2.9.4 Sasser

The Sasser worm relies on a two step design to infect hosts: The �rst relies on bu�er-

over�ow to inject a piece of shell code, which then attempts to download and run an .exe

�le as the second step, completing the exploit (Bailey et al., 2005b). Port 445/tcp is also

the target port of the Sasser worm (Harder et al., 2006). The Sasser worm selects class

C networks and performs scans on all hosts of that subnet (/24) (Harder et al., 2006).

2.9.5 Witty

Witty was �rst observed on the 19th of march 2004, released only a day after the security

vulnerability was declared (Shannon and Moore, 2004). The worm exploited a bu�er

over�ow vulnerability, caused by the decoding of ICQ packets (Irwin, 2011), in numerous

Internet Security Systems products (Shannon and Moore, 2004). Witty was also the �rst

worm to carry a destructive payload, erasing parts of the victim's hard-disk drive until the

machine was reset or the worm caused a fatal system error (Shannon and Moore, 2004).

To study the spread of the worm, bandwidth measurement was used as an indicator to the

number of infected and active hosts (Kumar, Paxson, andWeaver, 2005). By analysing the

frequency and number of Witty packets intercepted by the database, it becomes possible

to extrapolate an accurate value for the number of hosts that are infected and active on

the network (Kumar et al., 2005).

2.10 Analysis of Patch Tuesday dataset

Patch Tuesday refers to the second Tuesday of each month(Bortnik, 2010); Microsoft

releases accumulated security patches on this day (Zseby, King, Brownlee, and Cla�y,

2013).

CAIDA researchers put together an analysis tutorial using three tools. Corsaro, pcap

trace processing software; Octave scripts, which have numerical computation and graph-

ics capabilities; and tcpdump (Zseby et al., 2014). The dataset was created from data
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created by the UCSD Network Telescope (Zseby, King, Fomenkov, and Cla�y, 2014) run

by CAIDA (CAIDA, 2012). Instead of pushing the pcap into a database format, the re-

searchers chose to represent them in a FlowTuple format (Zseby et al., 2014). From there

they started packet analysis, looking at the following identi�ers: Number of packets per

hour; Number of unique source IP addresses (per hour); Protocol analysis of packets; Port

number analysis of packets; Temporal analysis of packet behaviour (Zseby et al., 2014).

The importance of temporal analysis of packet count and unique source IP address hits is

further emphasised in another CAIDA paper studying the changes in IBR with relation

to Patch Tuesday (Zseby et al., 2013). One signi�cant but circumstantial result of this

analysis is the observation of DNS backscatter packets from a DNS name server. The

telescope recorded between 4 and 6.5 million DNS backscatter packets in 45 hours before

the Patch Tuesday of January 2012. Within two hours after Patch Tuesday, the backscat-

ter stopped (Zseby et al., 2013). One theory is that the released patch prevented the

possibly compromised hosts (of a botnet) from participating further in the DDoS of the

name server from which the backscatter tra�c was being received (Zseby et al., 2013).

2.11 Dataset reporting

Packet capture datasets hold millions of individual packet hits. As such it becomes nearly

impossible to manually search through all the data. The sheer quantity of the data also

increases the di�culty of packet recognition. Representation of and reporting on datasets

enables researchers to abstract the data and infer patters. It also enables the sharing of

analysis results between researchers (Irwin, 2013).

2.11.1 Network Scans

Many packets captured through network telescopes are the result of network scanning in

an attempt to exploit end-hosts (Muelder et al., 2005). Vertical scans are scans that occur

across most or all ports on a single IP address, where as horizontal scans are scans that

comprise one or a few ports across multiple IP addresses (van Riel and Irwin, 2006b).

An early attempt at visualising network activity, including scans, is the Spinning Cube

of Potential Doom (Muelder et al., 2005)(van Riel and Irwin, 2006b), which represents

network scanning activity as a line in three-dimensional space. An important note here

is that RST tra�c, generally considered as backscatter, could be a scan to infer Firewall
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policy from an end-host (Moore et al., 2006). Creating �ngerprint identi�ers of scanning

patters simpli�es scan recognition, which can be di�cult as a result of the pseudo-random

nature of some network scan activity(Muelder et al., 2005).

2.11.2 The start of a reporting framework

August 2012 saw the release of a paper documenting the implementation of a simple

network analysis and reporting framework. The framework relied on the use of the Win-

pcap tool; a packet capturing API (Dhillon and Ansari, 2012). The study was run on

a lit enterprise network, with the aim of implementing a system that would be able to

di�erentiate legitimate network tra�c and attack attempts. The main issue raised was

the loose binding between users and their tra�c. It is di�cult to to accurately determine

the source of a packet, as addresses have become dynamic, and are also relatively easily

spoofed (Dhillon and Ansari, 2012). Use of the Winpcap4 tool and the Network Tra�c

Monitoring application enabled the capture of frames over the network. The captured

�elds included the source MAC address of each packet. It was analysis on these addresses

that determined whether a packet was legitimately created within the network or if it

was spoofed from an outside source (Dhillon and Ansari, 2012). From there a simple

tabular interface would represent suspicious packets and include information such as the

packet number, the date-time the packet was recorded and the log event that identi�ed

the packet. Every time a packet with an unknown MAC address was identi�ed it would

be logged and brought to the attention of the user (Dhillon and Ansari, 2012).

2.11.3 Representing the data

Information is most readily represented by either words or images. People are more

readily able to distinguish patterns through visual analysis of data, and will be more

likely to observe unexpected patters as well (van Riel and Irwin, 2006a). As such an

attempt was made to produce a viable visual analysis tool (van Riel and Irwin, 2006a).

The key features of the tool identi�ed include a log plot function to introduce spacial

expansion in clusters of data that would have been obscured in a linear plot (van Riel

and Irwin, 2006a). The tool is also intuitively time-animated as the temporal order of

network events is important in identifying and understanding scanning patterns (van Riel

and Irwin, 2006a). The tool also allows for manipulation of the data in the form of

4http://www.winpcap.org/
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translation, rotation and scaling, ensuring that regions of interest within the visualisation

can be isolated (van Riel and Irwin, 2006a). The analysis tool was able to isolate and

describe both vertical and horizontal scanning attempts and describe instances of 'Creepy

Crawly' horizontal scan attempts from the Slammer worm, as well as random distributed

scan activity (van Riel and Irwin, 2006a).

InetVis successfully represents network packet events, and its functionality is improved

by its ability to �lter events, as well as the fact that you can interact with the represented

data temporally (van Riel and Irwin, 2006b). One possible extension that was raised

is the implementation of a connection-�ow representation as well as the already present

packet event representation; a connection-�ow being an aggregate of packet events (van

Riel and Irwin, 2006b). The InetVis plotting scheme can be seen in �gure 7a (van Riel

and Irwin, 2006b). Figure 7b shows the graphical output produced by the InetVis tool

in a 3d environment, and represents a vertical port scan on a singular IP address of the

network (van Riel and Irwin, 2006b).
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(a) Graphic plotting scheme of InetVis

(b) Visualisation of vertical port scan

using the InetVis tool

Figure 2.6: Graphical representation using InetVis (van Riel and Irwin, 2006b)

Visualisation of network scan activity enables the viewer to quickly identify network scan

patterns (Muelder et al., 2005). The visualisation also allows for easier classi�cation and

comparison of di�erent scanning activity across the network block (Muelder et al., 2005).

Figure 8a represents two separate scans on the network block that have a similar pat-

tern, which tells the viewer that the scanning algorithms were extremely similar Muelder

et al. (2005). Figure 8b shows two separate scan patterns that utilised di�erent scanning

algorithms and techniques (Muelder et al., 2005).
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(a) Pattern visualisation of similar scans

(b) Pattern visualisation of di�erent scans

Figure 2.7: Pattern representations of network scans (Muelder et al., 2005)

2.11.4 Network monitoring and control through an interactive

3D game-engine

There are many di�erent approaches to network monitoring, and the visualisation of this

data is usually in a 2D or 3D format, and may contain interaction capability (Harrop and

Armitage, 2006). The Spinning Cube of Potential Doom is a good example of creative

representation (van Riel and Irwin, 2006b) and served as a basis for the development

of the more interactive InetVis (van Riel and Irwin, 2006a). Creating a more intuitive

and interactive representation of network data would reduce network-speci�c training re-

quired for those identifying and suppressing malicious tra�c across a network (Harrop

and Armitage, 2006). The system relies on an e�ective translation of network events

into virtual-world avatars, and to then translate interaction with the avatars into network

recon�guration events (Harrop and Armitage, 2006). Simple visual metaphors were in-

troduced to describe di�erent network variables and activities. These were then mapped

onto network metrics (Harrop and Armitage, 2006). The system allows interaction with

the network through a game character, which can perform certain basic actions like shoot-

ing an avatar to interact with the network in some way (Harrop and Armitage, 2006).

Added functionality comes from the ability to set multi-user acceptance of reactive net-
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work events before they are carried out (Harrop and Armitage, 2006). The system will

create avatar-bots to represent certain network metrics, including IP address and port

number - represented by location; and the content type of the data - represented by the

colour and texture of the object. User de�ned alerts would be represented by oscillation

about a �xed point (Harrop and Armitage, 2006). It was posited that the human mind

was better suited to pattern recognition, as opposed to computer algorithms; which would

make this visualisation of network data more bene�cial to and e�cient for users (Harrop

and Armitage, 2006). Figure 9a shows the graphical interface of the monitoring tool,

while �gure 9b shows a simple representation of the subsequent network interaction in

the background (Harrop and Armitage, 2006).

(a) Representation of user interface

(b) Diagram of system interaction with network

Figure 2.8: Interactive network activity mapping (Harrop and Armitage, 2006)

2.12 Internet Motion Sensor

The Internet Motion Sensor (IMS) is a system that was designed to give new insight

into current Internet security threats (Bailey et al., 2005a). The system trades in-depth
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information for global visibility, taking in less data overall but using distributed darknets

for added network visibility (Bailey et al., 2005a). An important aspect of the IMS is

that it makes an active attempt to complete a TCP connection(Cooke, Bailey, Watson,

Jahanian, and Nazario, 2004) by sending a TCP-ACK request and listening(Kurose and

Ross, 2010), in order to capture the payload of the possibly malicious packet sent across

the connection(Bailey et al., 2004). TCP packets hold the only data that need to be

actively collected as UDP and ICMP packets can be passively gathered (Bailey et al.,

2005a). The lightweight responder used to gather TCP payload data is designed to take

an MD5 hash of the gathered payload, only storing payloads with a unique hash (Bailey

et al., 2004). Analysis revealed an interesting trend in network scan activity. Some

worms, after infecting the hosts, install backdoors into the system (Cooke et al., 2004). It

was observed across networks that known backdoor ports of previous worms were being

scanned, possibly by opportunistic attackers seeking to create botnets from previously

compromised hosts (Bailey et al., 2005a). A DoS attack was observed December 10 2003;

as a result of address spoo�ng some of the backscatter was observed by the distributed

darknet (Cooke et al., 2004). The packets were received in �ve discrete network events,

three targeting the web server of www.sco.com at port 80, one DoS attack against the

FTP server at port 21 and another attack on the SMTP mail server, port 25 (Cooke et al.,

2004).

2.13 Hilbert Curves

The Hilbert curve, �rst described by David Hilbert in 1891, represents a space-�lling

curve that �lls more space as its order is increased (Cowie and Irwin, 2010).The Hilbert

Curve visualisation tool was developed with the intention of providing a high-level analysis

tool for large network packet captures; including analysis among a distributed network

telescope array (Irwin, 2011). Hilbert curves of higher orders can be used to group certain

classes of network block (Irwin, 2011), and curves of the order 4, 8, 12 and 16 hold 256,

65536, 16,777,216 and 4,294,967,296 represented points (Irwin and Pilkington, 2008). This

holds value as a method of representation as they correspond to the natural grouping

of network blocks /8 (Class A) /16 (Class B) and /24 (Class C), where the class is

representative of the size of the measured network block correlates to the number of

points; with Class C holding 256 unique IP addresses, Class B holding 65536 unique IPs

and Class A holding 16,777,216 unique IPs (Kurose and Ross, 2010). Hilbert curves allow

for the evaluation and comparison of the e�cacy of network telescopes with regards to the
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size of the observed IP block (Irwin and Pilkington, 2008). Hilbert curves similarly allow

researchers to visualise the e�ectiveness of network worm propagation algorithms (Irwin

and Barnett, 2009) across di�erent network block sizes (Irwin and Pilkington, 2008).

2.14 Analysis approaches in other �elds

This section covers work that, while not entirely relevant to the topic in question, represent

di�erent approaches to similar problems.

2.14.1 Waikato Environment for Knowledge Analysis Data Min-

ing Software

The Waikato Environment for Knowlege Analysis (WEKA) software tool was conceived

in 1992 with the aim of supplying researchers with a uni�ed data-mining workbench

with machine learning capabilities (Hall, Frank, Holmes, Pfahringer, Reutermann, and

Witten, 2009). WEKA incorporates many learning schemes, developing and adding to

the orignial schema available to researchers since 1992 (Hall et al., 2009). Some of the

features include data classi�cation, data cluster detection, attribute selection and �ltering,

as well as association rule discovery (Du, 2010). WEKA also allows the user to specify

preprocessing �lters as part of an enhanced preporcessing tool package introduced with

the new release (Hall et al., 2009). WEKA is used by many disciplines as a data-mining

tool; some of the projects to use WEKA include: Systems for natural language processing;

Distributed and parallel data mining; Open source data mining systems and integration

with the Kepler open source work�ow platform5 as part of the Kepler Weka project (Hall

et al., 2009).

2.14.2 Passive IP traceback

It is di�cult to deploy an Internet-scale IP traceback system, in part because of the need

for cooperation between Internet Service Providers (Yao, Bi, and Zhou, 2010). Yao et al.

(2010) introduces a system that relies on passively gathering ICMP message backscatter,

which is generated by routers as the packets travel from attacker to victim. While the

5https://kepler-project.org/
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re�ection routers, routers that re�ect ICMP tra�c to network telescopes like CAIDA

(CAIDA, 2012), could be pinpointed through IP address mapping, it becomes impossible

to accurately trace the packets to the source as a result of a lack of information on the

current state of the Internet topology (Yao et al., 2010).

2.14.3 Geo-location of received packets

The need for network visualisation software became apparent after Operation Aurora,

a targeted network attack focused on Google, Adobe and over 30 Fortune 100 compa-

nies (O'Connor, 2013). Particularly, it was considered useful to correlate IP tra�c with

geographical locations. This would have vastly increased the response time against the

Aurora attack, as it would immediately have highlighted a frequent and seemingly unnec-

essary connection from multiple end-points to a web-server in Taiwan and another server

in China (O'Connor, 2013). The book �Violent Python� discusses what steps would need

to be taken to implement such a system. The MaxMind open source GeoLiteCity database

was used to correlate source IP addresses to city-based accuracy (O'Connor, 2013). The

database was queried using the PyGeoIP library, produced by Jennifer Ennis (O'Connor,

2013). Dpkt was used to parse the captured pcap data, and from there the PyGeoIP script

was run on the isolated source addresses. KML6 �les were then used to create markers

on Google Maps relevant to the source and destination IP address hits, as a means of

visualising the information. If the coordinates returned a value found on Google Maps,

the marker was created. If the coordinates returned a result such as �location does not

exist�, the KML �le returned an empty string instead (O'Connor, 2013).

2.15 Summary

The analysis of Internet Background Radiation has the ability to reveal a wealth of infor-

mation about the practices, trends and characteristics of malicious network tra�c. Packet

capture, the �rst step of IBR analysis, can be completed on a localised or distributed net-

work telescope. This in turn allows researchers to compare packet capture results between

darknets, as long as there is a standardised temporal frame for the di�erent telescope data-

sets. The analysis of darknet data-sets is not limited to any one methodology or focus; as

such there is a wealth of information gained and extrapolated from packet capture analysis

6https://developers.google.com/kml/documentation/
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across multiple �elds in the Network Security industry. The diversity of analysis methods

and results is presented for the reader's consideration in this literature review. While this

approach allows for innovation within the �eld of Network Security, it limits the ability to

compare results between data-sets as there is little to no standardisation on the reporting

of the analysis results. While a standardised reporting framework would possibly narrow

the scope of new analysis techniques, it would provide a frame of reference within which

results from isolated darknets could be easily compared. The second obstacle within the

�eld of Network Security is that it is a time-sensitive pursuit. New vulnerabilities, as well

as the programs that exploit them, need to be discovered and countered as quickly as

possible to minimise damage to end-hosts across the network. The creation of a reporting

framework would hopefully allow for the timely identi�cation of new trends among more

recent darknet packet captures. The next chapter hopes to introduce a system design for

such a reporting prototype. Chapter four will look at reporting output generated by the

system.



Chapter 3

Design

This chapter presents the design of the system and will have three main sections. Section

3.1 discusses the isolated parts that make up the system, as well as how they interact

with one another. Section 3.2 deals with actually building the system, and includes

challenges and constrains faced during system implementation. This section will also

look at the reasons for and development of the ancillary reporting system created during

the implementation phase of the project. Section 3.3 deal with the evaluation of system

performance. The alignment of the system with the research goals is also evaluated.

3.1 Datasets

Five datasets were used to test the reporting capabilities of the system. The sensors used

to gather the datasets have been divided into two categories. This is not only because of

their address distance, but also as a result of the similarity of tra�c across these networks,

and the di�erences seen in the packet count (Nkhumeleni, 2014). The �ve monitored IPv4

address blocks are contained within the TENET1 (AS2018) network (Irwin, 2013). The

observed blocks exist in three distinct top-level IPv4 network address blocks: 146/8, 155/8

and 196/8. All �ve datasets were taken from the period 04 July 2013 to 12 February 2014,

a total of 224 days of packet captures.

1http://www.tenet.co.za/
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Name First packet received Last packet received Total number of packets Category

146.x.x/24 04-07-2013 08:53:01 12-02-2014 14:55:23 8663883 A

155.x.x/24 04-07-2013 08:52:48 12-02-2014 14:54:59 9256741 A

196.21.x/24 (1) 04-07-2013 08:52:47 12-02-2014 14:54:48 16364801 B

196.21.x/24 (2) 04-07-2013 08:52:47 12-02-2014 14:53:30 16398051 B

196.24.x/24 04-07-2013 08:52:51 12-02-2014 14:54:15 15523596 B

Table 3.1: Breakdown of datasets

3.1.1 Category A

The 146.231.x/24 and 155.232.x/24 data captures are included in the same category be-

cause of the characteristics that they have in common. They have a similar number of

recorded packets across the timeframe. They also share similarities in the logged tra�c.

They are also much closer to one another logically on the IPv4 address list than the 196

subsets. The similarity of these darknets is apparent in the comparison of darknets in

section 4.1. The breakdown of the packet caputres in Table 3.1 also give evidence for the

similar spread of tra�c across the various datasets.

3.1.2 Category B

196.21.x/24 (1), 196.21.x/24 (2) and 196.24.x/24 are grouped into this category also

because they have approximate packet counts and are logically close. They also share

this category as a result of the in�ux of tra�c they receive on port 445 as a result of

Con�cker (Nkhumeleni, 2014).

3.2 Tools and Techniques

This section looks at the tool choices made during the design stage of the project. These

tools and techniques are then used in collaboration to create the process components

described in the next section.
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3.2.1 JSON

JavaScript Object Notation2 (JSON) is a human-readable, lightweight data format. JSON

is a text based data format that is built on two structures. The �rst is a collection of

name/value pairs, similar to the structure of a dictionary or hash table. The second is

an ordered list of values, in this case an ordered list of the name/value pairs. This data

structure was selected because of the inherent closeness between it and Python dictionar-

ies. This simpli�es the parsing of the data which is then processed and manipulated using

Python. It was also selected because JSON is an almost universally readable format, and

can be utilised not only by various languages, but also incorporated into JavaScript in a

web-based platform.

3.2.2 Ipv4-heatmap

Ipv4-heatmap3 is a mapping tool that graphically represents IP addresses on a map of

the Internet (Irwin and Pilkington, 2008). The map of the internet is represented by

a twelfth order Hilbert curve (Irwin and Pilkington, 2008). Hilbert curves have been

previously introduced in section 2.13 and will not be dealt with here. Ipv4-heatmap was

developed by The Measurement Factory. It allows not only the mapping of IPs to a

Hilbert curve, it also allows the user to create a graphical overlay of where IP addresses

are currently allocated. The output created is a 4096 x 4096 pixel block, where recorded

IP addresses appear as coloured pixels while non-recorded IPs remain blank. At this

resolution each pixel represents 256 hosts present in a single /24 network block. An

example of the IPv4-heatmap output can be seen in Figure 3.1.

2json.org
3http://maps.measurement-factory.com/software/ipv4-heatmap.1.html



3.2. TOOLS AND TECHNIQUES 34

Figure 3.1: Example Ipv4-heatmap output

3.2.3 Python

The selection of Python as the programming language was the �rst step in designing

the system itself. Python integrates exceptionally will with Linux, this itself a major

reason for selecting the language. Python also o�ers an almost limitless amount of user

created libraries, allowing the language to be �exible to the needs of the user. As a

scripted language it also gives excellent performance with regards to string manipulation

and dictionary searches, integral concepts which would enable the development of the

system (Prechelt, 2000).
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3.2.4 Dpkt

Dpkt4 is an open-source, stand-alone Python module that can be used to create and parse

packet capture (pcap) �les. Pcap �les, as previously mentioned, are �les that hold the

information of packets that have been captured through the use of a network telescope.

While Dpkt can be used to create pcap �les, this functionality has been largely ignored

as it exists outside the scope of the project. It has been used here as a result of its ability

to parse pcap �les, after which the information can be manipulated and stored in a more

human-readable format. Dpkt was selected for two main reasons. The decision to create

the system using Python led to the �rst advantage of Dpkt, that it is a Python module.

It would thus be easier to integrate the di�erent components if they functioned using the

same language. The second advantage is that Dpkt is fast. The drawback here is that

completeness is sacri�ced for speed. Dpkt decodes single network packets, which raises

two key issues, namely that the module cannot deal with the fragmentation of packets

at the IP level or the TCP level. Dpkt does, as a result of fragmented and corrupted

packets, throw errors as it is not comprehensive. This is not considerably alarming, as the

system is meant to highlight trends and unexpected abnormalities, not create a complex

breakdown of packets or report the results in real-time.

3.2.5 Pandas

Pandas5 is an open-source library that o�ers easy to use data structures and data analysis

tools for Python (McKinney, 2011). pandas is built on top of the Python matplotlib

library, and can be incorporated with other libraries such as iPython and numpy to

increase its �exibility as a data reporting library (McKinney, 2011). Pandas was chosen

as a tool because of the �exibility of both its data structures and its graphical output

abilities. Speed of processing was also a consideration when selecting the pandas library

for graphical output.

4https://code.google.com/p/dpkt/downloads/list
5http://pandas.pydata.org/
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Figure 3.2: Example pandas output

3.2.6 PyGeoIP

PyGeoIP6 is a python library based on MaxMind's GeoIP C API7. PyGeoIP uses the

freely available MaxMind database8. The database is then queried by the library and

returns information, including the country of origin, related to the IP address queried

against it.

3.2.7 Latex

Latex9 is a document preparation and formatting system that is used to create profes-

sional documents (Kopka and Daly, 1995). It has the ability to create documents that con-

tain both graphics and neatly formatted mathematical formulae (Mittelbach, Goossens,

Braams, Carlisle, and Rowley, 2004). Latex can be used to create documents in a number

of styles including pdf �les (Kopka and Daly, 1995).

6https://github.com/appliedsec/pygeoip
7https://github.com/maxmind/geoip-api-c
8http://dev.maxmind.com/geoip/legacy/install/country/
9http://latex-project.org/ftp.html
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3.3 System components

This section looks at the various components as well as how they interact to achieve the

goals of the system. Many of the system parts are interrelated as a result of requiring

output from a previous component. There are no components that are required to run

in parallel. Each of the components are referenced as a labeled process that produces

output. The labels on Figure 3.3 correspond to the program components which are listed

below.

Figure 3.3: System diagram
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3.3.1 Dpkt to JSON parser

The �rst component of the system, represented by process (A) of Figure 3.3, converts

the pcap �le into a JSON data format �le. The �le is �rst parsed by the Dpkt module.

Dpkt methods then return valuable information that the packet contains. These returned

values are as follows: Timestamp of the packet arrival at darknet; Source IP address of

the packet; Destination IP address; Length of the packet; Source port; Destination port

and the Protocol that the packet uses. These values are then encapsulated into a JSON

format text �le, where each packet is represented by an object and the values returned

by Dpkt make up the values of the name/value pairs. While the parser currently reads

all packets, the program can also �lter only desirable packets by using certain criteria.

3.3.2 JSON data�le splitter

Process (B) is the second component, which parses the JSON �le and reads the timestamp

on the packet as it parses. It also creates a JSON �le named after the darknet and the

packet month. If the month present in the packet timestamp is not the same as that of the

previous packet, the created JSON �le being written to closes and a new month JSON �le

is created and written to. The splitter is set to use months as the unit of separation, as it

gives a more detailed overview of packet activity than an analysis of the entire pcap JSON

�le, but does not create such a data overload that it would be di�cult to see correlations

and discrepancies created by packet behaviour. The splitter can however be set to split

the parsed packets across any timeframe, be it days, weeks, years etc. This is useful as

it will allow us to isolate timeframes where packet activity has been observed to be of

interest.

3.3.3 Pandas series data formatter

Component (C) parses the JSON �les, using each name/value pair to generate separate

dictionaries for every name in the packet object. Each dictionary is then populated with

unique name values, and each name in the dictionary is followed by the count of that

particular name, i.e. how many times that unique value appears in the dataset. This will

create a structure as follows: {10.0.0.1: 15} for source IP 10.0.0.1 appearing 15 times.

When all of the dictionaries have been compiled from the available data they are converted

into a list of sorted tuples. The tuples are sorted from most frequent to least frequent
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and then written to a text �le, with each list of tuples generating a new text �le. These

text �les are essentially lists of ordered tuples with a unique �rst value.

3.3.4 Graph and table generation

The fourth component, (D), parses the list of tuples and isolates the top twenty most

frequent occurrences in the list. Here every tuple value that is parsed is also summed to

give the total number of packet hits in the list It then divides the tuples into a series of

values (the y axis of the graph) and a series of indices (the x axis of the graph). The

pandas library is then used to generate graphical representations of the current data. At

this time tables are also generated containing the name of the tuple, the frequency of the

tuple hits and the percentage of total packets attributed to this name value. Individual

tables and graphs are created from each of the tuple lists.

3.3.5 Source IP isolation

Component (E) is formed of a simple python program that strips the �rst tuple values of

the Source IP list and writes them to a text �le now containing all unique IP addresses

in the currently analysed block of the pcap �le.

3.3.6 Hilbert graph generation

The sixth component locates the list of IPs present in the target folder and uses the

python OS library to execute ipv4-heatmap in the terminal and feed it the list of unique

IP values, as well as a graphical overlay of IP distribution based on IANA records, and

an output name. A .png format graphical representation of the Hilbert curve is then

generated and saved to the folder. This is represented by process (F).

3.3.7 Geolocation

Process (G) of Figure 3.3 reads in the list of IPs created by the �fth, and uses PygeoIP

and the Maxmind IP Country database to correspond IP addresses to the country that

has been allocated their IP block. This output is then written to a list in the format

required by the fourth component, which can then also render the data graphically.
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3.3.8 Document Generation

The last process, (H), generates a Latex skeleton for the report. Graphs and tables

are then isolated in the folder and displayed in chronological order grouped into sets

identifying the trends in the darknet on a monthly basis as well as then giving a holistic

overview of the darknet tra�c. The overall analysis also includes a Hilbert curve plotted

from the source IP addresses that contact the darknet over the course of the packet

capture.

3.4 Implementation

This section discusses key packet information highlighted in the literature review that

would be useful for analysis purposes. It explores the problems encountered during the

implementation of the system itself. Section 3.4.3 will discuss the design of an ancillary

system, which was created as a result of di�culties identi�ed in 3.4.2. The last section

discusses the requirements and constraints of running the system.

3.4.1 Key Statistics and Identi�ers

During the literature review there were many avenues of analysis discussed with repsect

to network packet analysis, as well as statistics and identi�ers that could give the re-

searcher a greater understanding of the packet capture data. There is a large amount of

relevant security information that can be gathered from packet analysis (Irwin, 2012a).

The isolation of unique IP addresses, as well as the analysis of payloads from the source,

i.e. analysing the source and target ports as well as the protocol used, can give us an idea

of the size of an aggressive botnet or the degree to which a worm or other virus has spread

(Zseby et al., 2014). Creating a top-ten listing of the statistics of potentially malicious

IBR can give insight into trends or patterns within the tra�c (Irwin, 2013), more so if

data is available from a distributed darknet (Nkhumeleni, 2014). Horizontal and vertical

scans (van Riel and Irwin, 2006a). Studying the size of the packet can lead to possibly

identifying the intent behind the packet (Kim et al., 2004). Lin et al. (2009) identi�ed

a useful grouping of metrics in the form of a tuple that holds Source IP, Destination IP,

protocol, source port, destination port . Irwin (2012a) de�ned a more complete set of

metrics broken down into three categories: Top item trends within the packet capture



3.4. IMPLEMENTATION 41

must be highlighted; temporal aspects of the packet capture must be well documented;

ratio of active tra�c to backscatter (Irwin, 2012a).

3.4.2 Di�culties encountered

The �rst issue that a�ected the design of the system arose early. The Dpkt module threw

AttributeError exceptions when handling certain rare packets. Some of the information

of the captured packets could not be recovered by Dpkt, and the program would in turn

return an error. This was overcome by using try-catch statements and replacing the

irrecoverable values with a placeholder, in this case �-1�, which would then be �ltered out

by later components.

The second issue was the choice between CSV and JSON as the data format. Originally

CSV had been chosen, as the created �les are smaller than their JSON counterpart. The

pandas library also had methods designed to interact with CSV �les. In the end JSON

was chosen for three reasons. The �rst was that JSON was more human readable. The

second was that JSON is a more �exible data format, and integrates well with JavaScript.

The third is that JSON data structures are easier to manipulate in python because of

their similarity to python data structures.

Another area of di�culty was the lack of Dpkt documentation available. This made it

di�cult to identify and correctly use the methods in the Dpkt library to retrieve the

needed data from the pcap �le.

Scope change and scope creep management were problematic throughout the course of

development. The system could be built around practically anything. It has the ability

to showcase multiple di�erent combinations of analysis results. This lends itself to being

easily changed during the course of development, which makes it di�cult to decide which

areas of the system are more important, and which should be discarded. It is also inher-

ently di�cult on choosing a focus for both the data in the report, as well as the style in

which it is displayed.

One of the greatest challenges was introducing �exibility to the report while retaining a

report structure that was generic enough to allow comparisons between reports. It was

also a challenge to �nd the balance between too little information versus an information

overload. The decision was then made to create an ancillary system. This is discussed in

more detail in section 3.4.3.
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3.4.3 Development of an ancillary system

The report serves as a summary of the packet activity across the sensor set under study.

It does not have the ability to analyse and graph an element of interest within the dataset

that it identi�es. To perform more in-depth analysis on the JSON datasets, the code used

for the sorting and graphing of the data was adapted, and some new code written to pro-

duce di�erent graphs. These programs used an identi�ed �lter to isolate the information

from relevant packets while ignoring the 'noise' of the rest of the Internet background

radiation. These programs require user input as the report generation software does not

have the ability to identify areas of interest within the analysis and automatically de-

construct them. They �lter the dataset using an object value identi�ed as important in

the original report, and create a report where the output is focused on the �ltered value

and its packet tra�c captured by the darknet. The programs produce a timeseries of all

packets received as well as a cumulative time series. Both of these outputs can be seen in

Figure 3.4.

Figure 3.4: Example Time-series output

Two other graphs are also produced, a scatter plot of Destination port vs Time, an example

of which can be seen in Figure 3.6, as well as a time-series of a speci�c port, both with

reference to a single source or destination IP address.
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Figure 3.5: Example scatter plot

Many of the graphs created will be useful in helping to explain the results of the analysis,

and will be included to better illustrate the packet capture data. These programs were

then incorporated into an ancillary system to the main project. The letters on �gure 3.6

refer to the same parts of the system found in Section 3.3. Parts I and J are new editions

and will be discussed below.

Process (I) of Figure 3.6 is a program that parses the JSON format dataset and creates

separate list �les for each present object. These �les are then read in by process (J)

which plots the packet information against time, to better represent the temporal nature

of the packet tra�c intercepted by the darknet. Processes (D,E,F,G) act as expected.

Processes (C) and (I) also �lter the packet data based on an identi�ed value of interest,

e.g. a single destination IP address in the dataset. This value, identi�ed through the

report, is then used to generate another report that �lters against one or more values

for a speci�c object in the packets of the dataset. Process (C) di�ers from the original

document generation process only through the value �lter which is applied to the packets,

ensuring that only the relevant analysis packets are recorded. Processes (I) and (J) are

completely unique to the ancillary report, creating lists of packet values that are then

used to generate time related graphs. These temporal representations of the packet data

are unique to the ancillary report and do not appear in the main report.
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Figure 3.6: Ancillary system diagram

3.4.4 System constraints

It is important to note that the system will strain the memory resources of the user's PC

if the input packet capture �le is too large. A pcap �le that is larger than the available

memory will crash the system, as the ability to manage extremely large pcap �les was not

included in the system speci�cations. Pcap �les that are found to be too large should be

split into multiple �les before serving as input for the system.

It is recommended that the host running the system have twice as much memory available

as the size of the pcap �le to ensure that the analysis and report generation happen in a

timely manner.
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3.5 Evaluation

This section will deal with evaluating the ability of the system to achieve its goals. It

will compare these goals to those set out at the beginning of the paper before concluding

whether or not the system has remained relevant.

3.5.1 Output of the system

The system creates a document that describes the activity of packets recorded in a pcap

�le. The length of the report is dependent on the number of months that the pcap

scans. While the system can be set to weeks, days etc. a monthly summary is the default

setting. For each month the document will contain a summary of the most frequent packet

activity for a number of information objects: Destination IP, TCP destination port, UDP

destination port, Source IP, Source port, Protocol used, Geolocation on source IPs. All

of these graphs and tables The �nal analysis results summarise the entire dataset and

include a Hilbert curve of the source IPs recorded for the period of dataset capture. The

ancillary report produces a report that focuses on a particular �lter, and only for the

dataset that is being �ltered; be it monthly or the total dataset. This secondary report

also contains a time-serises, cumulative time series, destination port vs time plot, as well

as time-series plots of speci�c ports.

3.5.2 Goals that the system achieves

The initial analysis performed by the system targets quantitative results based on infor-

mation that can be derived from the packet header. Each packet is processed and the

data that has been identi�ed as useful is stored. The system then summarises, tabulates

and graphs the data obtained from the packets, comparing the frequency of packets based

on certain �elds. The system gives both a breakdown of the total packet capture as well

as a breakdown by month. These results are then displayed in chronological order, each

set of data grouped into its month. The generated document also leaves space for the

user to write observations or comments on the document. The ancillary system �lters the

dataset using an identi�ed value. It produces a drill-down of the behaviour of packets

related to the identi�ed value within the dataset.
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3.5.3 Achievement of research goals

The system is able to generate report documents using Latex. A general report of packet

activity throughout the packet capture, as well as a drill down report that can �lter

packet values of interest. The system is able to analyse a pcap �le and return tabular and

graphical output representing the data. The system is also able to produce standardised

reports irrespective of the pcap. The second and third research goals have been met

with regards to the prototype system. It is felt that, while the system does exhibit

a certain amount of �exibility with regards to its reporting output, it is still largely

limited by human interaction with the system, both in the identi�cation of results that

require further investigation and in the ability to automatically create a more case-speci�c

report. This is mitigated however by the existence of the ancillary report generation, which

allows a greater degree of �exibility for analysis than the original report framework. The

achievement of these goals as well as possible future work on the system will be addressed

in section 5.3.

3.6 Summary

This chapter has looked at the design and implementation phases of the system. The

design elements of the system were a�ected by the �ndings in chapter two, which in turn

had e�ects on the implementation of the system. The parts of the system have been

documented, as well as the interaction between those parts and the output created by the

system. Challenges faced during the implementation are discussed, including the decision

to create an ancillary system based on the perceived lack of �exibility exhibited by the

�rst report. The system is also critically evaluated in this chapter. It was found that the

system completed two of the three research goals, and reached a level of competence in

giving the report �exibility with regards to its analysis and output. Chapter four uses

the graphical and tabular output generated by the report generation systems to perform

case studies and further analysis to better showcase the strengths of the system.



Chapter 4

Analysis

This chapter looks at selected case studies identi�ed by the reporting system data. Inter-

esting trends that have been identi�ed are deconstructed in an attempt to gain greater

insight into what is happening in the packet capture while also demonstrating the capa-

bilities of the reporting system. The �rst case study is a comparison of results for the 146

and 155 (Category A) darknets. This �rst case study is conducted in the attempt to show

the strengths of the report with regards to trend identi�cation across a darknet, as well

as its ability to compare results from di�erent darknets. The other case studies focus on

interesting packet activity identi�ed by the comparisons conducted in the �rst case study,

in an attempt to show the �exibility of the system, as well as its ability to describe more

discrete packet activity as opposed to the general �ow of packet activity across a darknet.

4.1 Case Study: Comparison of the 146 and 155 dark-

nets using reporting output

The 146 and 155 datasets have been placed in the same category as a result of the similarity

of their packet captures (Nkhumeleni, 2014). This is useful to illustrate the value of the

system output with regards to comparing results for two separate datasets. This section

will focus on introducing some of the initial analysis results as well as create a contextual

setting for the analysis of the following sections. The analysis of the following case studies

are all generated by �ltering packet activity by values determined to be of interest in the

original report.
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4.1.1 Destination IP and port activity for July and August 2013

Rank Destination IP Number of packets received Percentage of total packets

1 146.x.x.110 13667 1.620

2 146.x.x.105 11676 1.384

3 146.x.x.114 8599 1.019

4 146.x.x.118 8359 0.991

5 146.x.x.119 6461 0.766

6 146.x.x.36 5701 0.676

7 146.x.x.5 5233 0.620

8 146.x.x.50 4806 0.570

9 146.x.x.62 4628 0.549

10 146.x.x.57 4611 0.547

(a) 146 07/13 dataset

Rank Destination IP Number of packets received Percentage of total packets

1 155.x.x.25 488243 35.423

2 155.x.x.30 54948 3.987

3 155.x.x.210 24029 1.743

4 155.x.x.114 8988 0.652

5 155.x.x.113 8945 0.649

6 155.x.x.102 8361 0.607

7 155.x.x.110 7882 0.572

8 155.x.x.222 7206 0.523

9 155.x.x.118 5907 0.429

10 155.x.x.14 5415 0.393

(b) 155 07/13 dataset

Table 4.1: Destination IP results for July 2013

The �rst thing that is noticeable is the large packet spike for destination IP 155.x.x.25,

rank 1, in the 155 dataset in Table 4.1 (b). The 146 dataset shows a more evenly spread

ratio of packets to destination IPs, with no destination IP receiving even two percent of

the dataset packets. The 155 dataset however has one IP address that receives 35 percent

of the total packets of the dataset. It has been noticed over the course of this research

that if one IP address receives a noticeably larger share of the total packet count then the
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IP itself has most likely been spoofed (Mirkovic and Reiher, 2004). The attack packets

were then re�ected by the target host and captured by the darknet IP; the same IP that

was spoofed as the source address of the attack packets.

(a) Destination IP results for 146 dataset August 2013(b) Destination IP results for 146 dataset August 2013

Figure 4.1: Comparison of destination IP and TCP port activity for 146 and 155

A look at the graphical output in Figure 4.1 (b) from the following month reveals that

there is still a large amount of activity on the 155.x.x.25 destination IP address. The

source of this tra�c will be looked at in section 4.2. A spike is also present on the 146

dataset, on IP 146.x.x.65 of Figure 4.1 (a). There were no large discrepancies between IP

packet frequency in the previous month. This anomaly will also be further analysed in

section 4.3.
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Rank Source port Number of packets sent Percentage of total packets

1 80 126231 14.965

2 6000 44212 5.242

3 30800 19189 2.275

4 4935 8852 1.049

5 22 7308 0.866

6 12200 3701 0.439

7 3001 3403 0.403

8 5109 3266 0.387

9 5061 2980 0.353

10 25565 2867 0.340

(a) 146 07/13 dataset

Rank Source port Number of packets sent Percentage of total packets

1 53 486264 35.279

2 80 127746 9.268

3 6000 48539 3.522

4 30800 19802 1.437

5 4445 8202 0.595

6 22 7548 0.548

7 4935 6353 0.461

8 5343 3724 0.270

9 3001 3592 0.261

10 12200 3157 0.229

(b) 155 07/13 dataset

Table 4.2: Source port results for July 2013
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(a) 146 08/13 dataset (b) 155 08/13 dataset

Figure 4.2: Source port results for August 2013

An interesting correlation is that source port 53 is responsible for 35 percent of the tra�c

to the 155 darknet in Table 4.2 (b), and 35 percent of the tra�c is sent to a speci�c

destination IP in Table 4.1 (a). It could then be assumed that most of the packets

traveling to the IP in question were sent from port 53. The popularity of port can also

be seen in Figure 4.2 (b). The distribution of source port activity seen in Figure 4.2

(a) is closer to the expected IBR results for the early months of the dataset. This also

indicates that it may be an attack related to DNS ampli�cation (Deshpande, Katsaros,

Basagiannis, and Smolka, 2011), and will be explored further in section 4.2.
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4.1.2 SSH activity starts December 2013

Rank Destination port Number of packets received Percentage of total packets

1 22 129851 15.735

2 80 92347 11.190

3 3389 61771 7.485

4 445 38227 4.632

5 8080 33773 4.092

6 23 25653 3.108

7 443 24609 2.981

8 1433 19162 2.321

9 5900 12549 1.520

10 3128 9391 1.137

(a) 146 12/13 dataset

Destination port Number of packets received Percentage of total packets

22 99002 12.672

80 97104 12.429

3389 60621 7.759

8080 34482 4.414

1433 26519 3.394

443 25478 3.261

445 19036 2.437

5900 16537 2.117

23 13146 1.683

3128 10480 1.341

(b) 155 12/13 dataset

Table 4.3: TCP destination port results

December is the �rst month that SSH packets create noticeably larger tra�c than in

previous months. Tables 4.3 (a) and (b) clearly show that tra�c to destination port 22

has the highest frequency for both darknets respectively. Note that the tra�c on port 22

makes up over 15 percent of darknet 146 (4.3 a) and over 12 percent of the TCP tra�c of

the 155 darknet (4.3 b). These percentages are much lower than in the month of January

2014, as a sharp rise in packets to port 22 is recorded near the middle of the month.
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Figure 3.4 (a) shows that the TCP SSH tra�c recorded by the 146 darknet in January

now comprises nearly 35 percent of all TCP tra�c. Similarly Figure 3.4 (b) shows a rise

to just over 30 percent of all TCP tra�c comprising of TCP SSH tra�c. The rise in SSH

tra�c will be further dealt with in section 4.4.

(a) 146 darknet 01/14 (b) 155 darknet 01/14

Figure 4.3: Destination port results for the 146 and 155 darknets for January 2014
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4.2 Case Study: DNS ampli�cation attack

A breakdown of the 155.x.x.25 IP mentioned in section 4.1.1 revealed that six unique

source IP addresses were responsible for almost all of the tra�c collected at the afore-

mentioned destination IP address. It can therefore be concluded that the hosts at these IP

addresses are the target of the attack. It was found that the attack continued throughout

the months of July and August.

Figure 4.4 shows the packet frequency from the top twenty source IPs sending packets to

155.x.x.25. It also shows a breakdown of source ports of the recorded packets. Almost all of

the source port 53 tra�c seen in Figure 4.4 (b) can be attributed to the six source IPs that

are the dominant contributors in Figure 4.4 (a). The large presence of source port 53 tra�c

from the target hosts suggests that they were the victim of a DNS ampli�cation (DDoS)

attack (Kambourakis, Moschos, Geneiatakis, and Gritzalis, 2007). Further analysis was

then done by isolating the tra�c that each IP was responsible for. Figure 4.5 is a collection

of destination port scatter plots and time-series plots that tracks the activity of one source

IP over two months.

(a) Source IPs responsible for tra�c (b) Source ports of attack

Figure 4.4: Breakdown of IP 155.x.x.25
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(a) Destination port of packet vs Time 07/13 (b) Destination port vs Time 08/13

(c) Time-series of packets received 07/13 (d) Time-series of packets received 08/13

Figure 4.5: Packets from IP 122.225.217.193

Figure 4.5 (a) and 4.5 (b) are plots that represent the destination ports of the packets

sent by the source IP in question. We can see that the attack was across all ports, and

continued throughout the two months. DNS ampli�cation attacks aim to consume the

bandwidth of a system, which is done by �ooding a target host with DNS response packets

that it hasn't requested (Deshpande et al., 2011). This is most likely a re�ected zombie

botnet attack (Kambourakis et al., 2007).

A similar attack was recorded on the 155 darknet during October 2013. The attack was

shorter in duration than the July-August attack.
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(a) Source port vs Time 155 10/13 (b) Time-series 155 10/13

Figure 4.6: Recorded DNS attack October 2013

It is interesting to note that this DNS attack was much shorter in duration than the

one recorded in July/August. It is also interesting to note that the banding occurs on

the source ports in Figure 4.6 (a) similar to the banding in Figure 4.5 (a & b) but the

duration is not as long as that noted in Figure 4.5 (c & d). Looking at Figure 4.6(b),

the transmission of packets is not as consistent as the tra�c recorded in the July/August

period. This would suggest that this is a group with access to a di�erent zombie botnet.
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4.3 Case Study: DDoS found in 08/13

Figure 4.7: TCP destination port results for 146 darknet August 2013

Analysis run on the 146.x.x/24 dataset revealed that 49348 was the port at which the most

tra�c was received. This was also con�rmed by the results presented in Figure 4.5, which

gives a destination port breakdown of the month of August for the 146 darknet. It was

the only such instance of the port appearing in the top port results and was investigated

as a result. A port lookup revealed that 49348 is inside a block of dedicated ports used

for Apple's Xsan Filesystem Access (Apple, 2014) with respect to Apple products. The

port is simply listed as dynamic and/or unallocated otherwise. This information seemed

to point to an attack that targeted Apple users, and the results were then �ltered using

port 49348.
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Figure 4.8: Results of �lter on 49348

The results show that all of the tra�c was received by a single IP address, and all of the

tra�c originated from the same address. It is also clear that the tra�c started on the

26th of August and ended after the 27th of August, only two days of activity. The spike

is also noteworthy, from 0 to 20000 on the �rst day of the attack and from 20000 to 70000

on the second day. These packets are not sent from the attacker, but from the receiver.

The DDoS attack results in backscatter (Irwin, 2013) from the target host as it attempts

to reply to the attacking packets. These packets are then received at the darknet as a

result of IP spoo�ng (Mirkovic and Reiher, 2004), where one of the spoofed source IP

addresses in the attack was 146.231.x.65. All of the packets that were sent to port 49348

were sent by 27.50.2.191, who is assumed to be the target of the DDoS. 27.50.2.191 was

then used as the �lter parameter for all of the other darknet datasets for the month of

08/2013 in an attempt to validate the presence of a DDoS. 196.21 (1) returned nearly

identical results to the 146.231 dataset.

Figure 4.9: 196.21 (1) results on IP �lter
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The packet spike is much smaller than the backscatter captured by the 146 dataset,

and occurs later as well. This could indicate that this attacker may have started after the

146.231 spoofer, or that this attacker may have been cycling through spoofed IP addresses.

There is still undeniably a change in activity on the 27th of August on both darknets.

The same IP is responsible for both spikes but otherwise does not feature in the dataset

activity. Further DDoS activity was reported on a sub-list of the GMANE mailing list1,

where user Mike Wrigth said that he was receiving constant tra�c from 27.50.2.191:80

for port 4460 of his host. This was posted 02:17 27 August 20132 and coincides with the

captured tra�c on the darknets.

4.4 Case Study: SSH/port 22 activity in the datasets

While activity on port 22 (SSH protocol) had been increasing since the middle of December

2013, there was a large, maintained activity spike in January of 2014. This is particularly

interesting as the spike was seen across all �ve darknets. All �ve darknets will be examined

in this case study. Special attention will be given to the month of January in particular

across all of the darknets. The month of February 2014 will not be focused on as the

packet captures only continue for twelve days of the month.

Figure 4.10: Time series of 146.231 dataset

1http://gmane.org/
2http://comments.gmane.org/gmane.comp.security.�rewalls.net�lter.general/46291
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Figure 4.11: Time series of 155.232 dataset

Figure 4.12: Time series of 196.21 (1) dataset

Figure 4.13: Time series of 196.21 (2) dataset
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Figure 4.14: Time series of 196.21 (3) dataset

It is clear that, looking at �gures 4.1-5, that there was an increase in SSH activity at

roughly the same time across all the darknets. Of these �ve darknets, the 146 and 196.24

darknets are the most interesting cases. SSH tra�c accounts for 25% of the tra�c for

the 146 darknet during the month of January. Of all the darknets this is the greatest

percentage of port 22 tra�c per total packets recorded. 196.24 is of interest because it

logged the most SSH packets in a single day, across all darknets, and despite receiving

less overall SSH packets, has a higher packet percentage than the other 196 datasets.

Darknet SSH TCP packets SSH UDP packets Dataset Total packets % of total packets

146 338648 5 1352396 25.041

155 266832 9 1246840 21.401

196.21 (1) 395192 8 2582831 15.301

196.21 (2) 394116 7 2508143 15.714

196.24 389682 4 2373478 16.418

Table 4.4: Packet frequency across port 22 for the month of January 2014

Note that Table 4.13 includes packets that were sent to or received at port 22. This is

also the only table in Chapter 4 that was not created by the system, and is instead an

amalgamation of two tables.
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Figure 4.15: Time series packets received at port 22 for 146 and 196.24 for January 2014

Looking at the time series for these two darknets, it is clear that SSH tra�c started

climbing around the 15th of January. It is also interesting that the 146 dataset saw a

sudden drop on the 28th of January, whereas the 196.24 dataset saw a drop on the 30th.

Both datasets then show a similar peak that registers far above the 5000 packets per day

average that lasts until the 13th of the month.

Figure 4.16: Unique Source IPs related to SSH tra�c for 146 and 196.42

Of the IP addresses responsible for sending SSH packets, more than 50% belong to IPs

registered by China. An additional 10% is generated from the United States. It is inter-

esting to note that the distribution of unique IPs responsible for the tra�c would be so

similar in di�erent darknets. IP spoo�ng is a reality however, and these results should not

be considered entirely accurate. The general trend can be assumed to be accurate even
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with the possibility of IP spoo�ng, as IP spoo�ng is most commonly observed in DDoS

backscatter (Irwin, 2013) (Mirkovic and Reiher, 2004).

A study by Allman et al. (2007) looked at scanning data over the period 1994 - 2006. Over

this period SSH scanning tra�c was minimal and unnoteworthy (Allman et al., 2007).

2007 is a notable year for SSH tra�c as it is the �rst year that SSH packets made up

a signi�cant percentage of Internet Background Radiation (Wustrow et al., 2010). It is

also interesting that tra�c to port 23 increased in 2007 also(Wustrow et al., 2010). SSH

became a major scanning packet contributor in 2014 (Durumeric, Bailey, and Halderman,

2014). It was also noted that SSH was the most targetted port in large scans, but only the

seventh most targeted in smaller scans (Durumeric et al., 2014). SSH tra�c, along with

RDP, ICMP and MYSQL tra�c showed similar patterns with regards to their country

of origin. All of these protocols had the largest number of scanning packets come from

China, with the U.S.A being the second highest contributor (Durumeric et al., 2014).



Chapter 5

Conclusion

This last chapter will present a summary of the paper itself. It will reiterate some of the

key points of each chapter. There will also be some concluding remarks about the project

itself. Finally a consideration will be given to future possible development of the project

itself.

5.1 Summary of the research

The main focus of the project, as outlined in chapter one, was the creation of a system

that had analysis and reporting capabilities with respect to packet capture �les created by

network telescope sensors. The system was also expected to create a standardised form of

reporting output. Chapter two looked at three key areas of literature. The �rst was the

fundamental work from which the system would get its context. The second key area dealt

with the possible analysis routes of packet capture data. The third and �nal area handled

possible reporting styles and responses to generated analytical data. The integration of

�ndings in the literature becomes apparent in the third chapter, which covers the design

and implementation of the system, as well as an evaluation of the system itself. This is

then followed by chapter four, that uses output from the system to perform analysis. The

�rst part of the chapter focuses on a broader analysis and comparison of datasets while

the second focuses on isolating interesting packet behaviour. This paper was written with

the intent to document the prototype system while also showcasing the functionality and

usefulness of the system to researchers in the Information Security �eld.

64
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5.2 Concluding remarks

Network tra�c analysis is falls under the banner of Information Security in the �eld of

Computer Science. Internet background radiation gives researchers a better understand-

ing of how both active and passive malicious tra�c interacts with the larger Internet. An

understanding of the network tra�c captured by the datasets is fundamental in the pur-

suit of creating a reporting infrastructure. This project explores the nature of unsolicited

network tra�c through analysis, which enables the creation of reports as a result of the

tabular and graphical output. The system can create reports of the same style and format

from a supplied pcap �le. Examples of system outputs can be seen in the appendix, which

also holds details of the Git repository that hosts the code created during the implemen-

tation of the system. It should be noted here that the ancillary report produces all of

the graphs and tables present in the �rst report. These have been left out for the sake of

brevity.

5.3 Future work

There are di�erent avenues that can be explored in an attempt to improve the functionality

or increase the uses of the system. Some ideas towards a more complete reporting system

are listed below.

• Development of system to allow for near real-time packet sni�ng analysis and re-

porting that updates regularly to keep information as well as summarised results

current and relevant.

• Implement a data carving functionality, whereby the system can separate parts of

the larger pcap �le for analysis without the need to process the pcap to another

format.

• Increase the scope of the reporting output to focus on a broader collection of data

categories.

• Introduce the ability to create textual output that serves as an interpretation of the

analysis and output produced by the report.

• Create a component within the system that automatically compares reports from

di�erent datasets after generation. This component would then highlight areas of
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both reports that have a high and low similarity, which is usually an indicator of

interesting packet tra�c.
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Analysis has been performed on datasets extracted from the
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results generated by the report. A latex document of the

report has also been created however that can be altered to
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1 07/2013

1.1 Destination IP

Figure 1: Destination IP packet count
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Table 1: Destination IP packets
Destination IP Number of packets recorded Percentage of total packets

155.x.x.25 488243 35.42
155.x.x.30 54948 3.986
155.x.x.210 24029 1.743
155.x.x.114 8988 0.652
155.x.x.113 8945 0.648
155.x.x.102 8361 0.606
155.x.x.110 7882 0.571
155.x.x.222 7206 0.522
155.x.x.118 5907 0.428
155.x.x.14 5415 0.392
155.x.x.1 4738 0.343
155.x.x.38 4675 0.339
155.x.x.94 4642 0.336
155.x.x.12 4486 0.325
155.x.x.98 4375 0.317
155.x.x.77 4340 0.314
155.x.x.70 4252 0.308
155.x.x.43 4232 0.307
155.x.x.108 4159 0.301
155.x.x.23 4119 0.298
Total: 663942 39

Number of unique hits: 1378320
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1.2 Destination Port TCP

Figure 2: Destination IP packet count
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Table 2: Destination Port TCP packets
Destination Port TCP Number of packets recorded Percentage of total packets

8080 117397 20.36
3389 66330 11.50
80 31342 5.437
1433 26531 4.602
22 25067 4.348
23 18785 3.258
1234 16309 2.829
445 13848 2.402
135 9947 1.725
443 7341 1.273
5900 7246 1.257
1723 6611 1.146
25 4991 0.865
3072 3664 0.635
1024 3524 0.611
5631 3210 0.556
3306 2985 0.517
139 2403 0.416
1080 2319 0.402
8443 2283 0.396
Total: 372133 55

Number of unique hits: 576406
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1.3 Destination Port UDP

Figure 3: Destination IP packet count
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Table 3: Destination Port UDP packets
Destination Port UDP Number of packets recorded Percentage of total packets

53 98965 12.34
5060 38619 4.815
19 25168 3.138
6588 21066 2.626
1434 4147 0.517
11000 2249 0.280
3544 2144 0.267
39455 1821 0.227
29735 1472 0.183
3589 1339 0.166
38584 948 0.118
161 836 0.104
30247 709 0.088
137 581 0.072
623 515 0.064
35325 458 0.057
61929 452 0.056
16810 450 0.056
7000 444 0.055
Total: 202383 21

Number of unique hits: 801914
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1.4 Source IP

Figure 4: Destination IP packet count
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Table 4: Source IP packets
Source IP Number of packets recorded Percentage of total packets

123.151.42.61 98547 7.149
183.60.59.230 83032 6.024
180.153.162.151 82777 6.005
112.90.143.34 81568 5.917
119.167.195.7 80195 5.818
221.204.186.8 80056 5.808
122.225.217.193 76843 5.575
88.208.52.138 50611 3.671
81.176.228.2 21057 1.527
113.108.21.16 15575 1.129
188.165.95.171 12737 0.924
54.230.14.2 10953 0.794
83.218.1.251 9126 0.662
37.59.29.220 5430 0.393
50.97.141.37 4837 0.350
192.69.90.2 4234 0.307

89.248.171.125 4215 0.305
208.110.68.244 4096 0.297
60.214.233.220 3912 0.283
85.195.120.18 3723 0.270

Total: 733524 44

Number of unique hits: 1378320
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1.5 Source Port

Figure 5: Destination IP packet count
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Table 5: Source Port packets
Source Port Number of packets recorded Percentage of total packets

53 486264 35.27
80 127746 9.268
6000 48539 3.521
30800 19802 1.436
4445 8202 0.595
22 7548 0.547
4935 6353 0.460
5343 3724 0.270
3001 3592 0.260
12200 3157 0.229
5061 3064 0.222
12214 2913 0.211
25565 2892 0.209
12206 2859 0.207
12224 2836 0.205
12202 2779 0.201
12223 2778 0.201
12201 2776 0.201
12229 2775 0.201
Total: 740599 48

Number of unique hits: 1378320
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1.6 Geolocation results of source IPs

Figure 6: Destination IP packet count
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Table 6: Geolocation results of source IPs packets
Geolocation results of source IPs Number of packets recorded Percentage of total packets

China 21347 40.48
United States 5368 10.18

Japan 2822 5.352
Korea, Republic of 2212 4.195

Taiwan 1646 3.121
Brazil 1352 2.564

Russian Federation 1303 2.471
Germany 1224 2.321
France 1219 2.311

Thailand 1181 2.239
India 935 1.773

Hong Kong 877 1.663
Turkey 726 1.376

584 1.107
United Kingdom 550 1.043

Canada 534 1.012
Netherlands 523 0.991

Italy 496 0.940
Vietnam 483 0.916
Indonesia 410 0.777
Total: 45792 78

Number of unique hits: 52726
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9 Entire Dataset

9.1 Destination IP

Figure 49: Destination IP packet count
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Destination IP Number of packets recorded Percentage of total packets

155.x.x.25 1017157 10.98
155.x.x.114 94921 1.025
155.x.x.30 84967 0.917
155.x.x.113 69459 0.750
155.x.x.118 68582 0.740
155.x.x.110 63217 0.682
155.x.x.222 55263 0.597
155.x.x.1 54411 0.587
155.x.x.210 51836 0.559
155.x.x.151 49822 0.538
155.x.x.112 47758 0.515
155.x.x.58 44991 0.486
155.x.x.92 44124 0.476
155.x.x.125 41280 0.445
155.x.x.35 40729 0.439
155.x.x.102 39835 0.430
155.x.x.95 39074 0.422
155.x.x.23 37025 0.399
155.x.x.98 36869 0.398
155.x.x.242 36623 0.395

Total: 2017943 11
Number of unique hits: 9256741

Table 49: Destination IP packets
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9.2 Destination Port TCP

Figure 50: Destination IP packet count
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Destination Port TCP Number of packets recorded Percentage of total packets

22 753999 14.08
3389 515411 9.624
80 381739 7.128
23 332224 6.203
8080 286188 5.344
1433 189615 3.540
445 155197 2.898
443 107228 2.002
5900 106041 1.980
1234 63541 1.186
25 59295 1.107
1723 54545 1.018
3306 50963 0.951
3128 50952 0.951
135 45709 0.853
5631 34756 0.649
139 26432 0.493
0 25075 0.468

11702 22567 0.421
1024 21546 0.402
Total: 3283023 52

Number of unique hits: 5355045

Table 50: Destination Port TCP packets
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9.3 Destination Port UDP

Figure 51: Destination IP packet count
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Destination Port UDP Number of packets recorded Percentage of total packets

53 642608 16.46
5060 413325 10.59
19 162463 4.163
3544 26600 0.681
1434 24466 0.627
6588 21074 0.540
161 16080 0.412
123 13250 0.339
39455 12120 0.310
19222 11116 0.284
137 10987 0.281
30247 10692 0.274
1900 10096 0.258
29991 7967 0.204
29735 7407 0.189
29039 6046 0.154
45129 5349 0.137
623 4941 0.126
18991 3881 0.099
Total: 1410468 30

Number of unique hits: 3901696

Table 51: Destination Port UDP packets
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9.4 Source IP

Figure 52: Destination IP packet count
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Source IP Number of packets recorded Percentage of total packets

123.151.42.61 196594 2.123
183.60.59.230 168315 1.818
180.153.162.151 168048 1.815
122.225.217.193 162377 1.754
112.90.143.34 162332 1.753
221.204.186.8 161182 1.741
119.167.195.7 160546 1.734
122.136.196.116 154683 1.671
122.136.196.117 95925 1.036
95.64.37.10 83143 0.898
88.208.52.138 50611 0.546
64.236.64.139 46485 0.502
188.93.60.232 43890 0.474
108.59.13.103 34895 0.376
113.108.21.16 33841 0.365
27.50.2.131 31544 0.340

203.211.130.242 27909 0.301
198.20.69.74 26406 0.285
178.19.111.178 26389 0.285
91.235.143.170 25802 0.278

Total: 1860917 10
Number of unique hits: 9256741

Table 52: Source IP packets
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9.5 Source Port

Figure 53: Destination IP packet count
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Source Port Number of packets recorded Percentage of total packets

80 1098911 11.87
53 1024632 11.06
6000 713763 7.710
4935 48608 0.525
5061 38180 0.412
30800 37277 0.402
4445 35668 0.385
22 32254 0.348
5060 30500 0.329
1935 30471 0.329
5062 25903 0.279
25565 24987 0.269
12200 23546 0.254
0 22199 0.239

5070 22180 0.239
8000 20998 0.226
443 19811 0.214
5068 19692 0.212
7777 19570 0.211
Total: 3289150 29

Number of unique hits: 9256741

Table 53: Source Port packets
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9.6 Geolocation results of source IPs

Figure 54: Destination IP packet count
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Geolocation results of source IPs Number of packets recorded Percentage of total packets

China 188151 42.33
United States 30601 6.884

Korea, Republic of 28415 6.392
Japan 27733 6.239
Taiwan 19539 4.395

Russian Federation 14273 3.211
Thailand 10085 2.268

Hong Kong 10004 2.250
Brazil 8758 1.970
France 7637 1.718

Germany 7620 1.714
India 6873 1.546

Ukraine 4650 1.046
Canada 4393 0.988
Mexico 3996 0.899
Turkey 3676 0.827

Netherlands 3457 0.777
Indonesia 3402 0.765
Singapore 3370 0.758

Italy 3195 0.718
Total: 389828 76

Number of unique hits: 444484

Table 54: Geolocation results of source IPs packets
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9.7 Hilbert curve of darknet

Figure 55: Source IP packet count
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A.2. EXAMPLE ANCILLARY REPORT OUTPUT 102

A.2 Example ancillary report output



Report on activity for destination IP
146.x.x.65 for the month of December 2013

For the period 01/12/2013 - 31/12/2014

Analysis has been performed on datasets extracted from the
packet catpure to produce the graphical and tabular output of
the report. There has however been no interpretation of the
results generated by the report. A latex document of the

report has also been created however that can be altered to
include an interpretation of resutls.

Contents

1 Breakdown of destination IP 146.x.x.65 2
1.1 Destination IP . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Destination Port TCP . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Source IP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.4 Source Port . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.5 Geolocation results of source IPs . . . . . . . . . . . . . . . . 10
1.6 Time Series . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.7 Cumulative time series . . . . . . . . . . . . . . . . . . . . . . 13
1.8 Scatter plot of destination ports against time . . . . . . . . . . 14
1.9 Time series of port 22 . . . . . . . . . . . . . . . . . . . . . . 15
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1.6 Time Series

Figure 6: Destination IP packet count
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1.7 Cumulative time series

Figure 7: Destination IP packet count
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1.8 Scatter plot of destination ports against time

Figure 8: Destination IP packet count
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1.9 Time series of port 22

Figure 9: Destination IP packet count
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A.3. PROJECT REPOSITORY 108

A.3 Project Repository

All of the code has been made available at git clone https://github.com/29LetterAlpha-

bet/Towards_document_generation

It includes all of the original code used throughout the project as well as readme �les.


